首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 502 毫秒
1.
The complex fluvial sandstones of the Triassic Skagerrak Formation are the host reservoir for a number of high-pressure, high-temperature (HPHT) fields in the Central Graben, North Sea. All the reservoir sandstones in this study comprise of fine-grained to medium-grained sub-arkosic to arkosic sandstones that have experienced broadly similar burial and diagenetic histories to their present-day maximum burial depths. Despite similar diagenetic histories, the fluvial reservoirs show major variations in reservoir quality and preserved porosity. Reservoir quality varies from excellent with anomalously high porosities of up to 35% at burial depth of >3500 m below seafloor to non-economic with porosities <10% at burial depth of 4300 m below seafloor.This study has combined detailed petrographic analyses, core analysis and pressure history modelling to assess the impact of differing vertical effective stresses (VES) and high pore fluid pressures (up to 80 MPa) on reservoir quality. It has been recognised that fluvial channel sandstones of the Skagerrak Formation in the UK sector have experienced significantly less mechanical compaction than their equivalents in the Norwegian sector. This difference in mechanical compaction has had a significant impact upon reservoir quality, even though the presence of chlorite grain coatings inhibited macroquartz cement overgrowths across all Skagerrak Formation reservoirs. The onset of overpressure started once the overlying Chalk seal was buried deeply enough to form a permeability barrier to fluid escape. It is the cumulative effect of varying amounts of overpressure and its effect on the VES history that is key to determining the reservoir quality of these channelised sandstone units. The results are consistent with a model where vertical effective stress affects both the compaction state and subsequent quartz cementation of the reservoirs.  相似文献   

2.
Anomalously high porosities up to 30% at burial depth of >3000 m along with varying amounts and types of carbonate cements occur in the fluvial channel sandstone facies of the Triassic Skagerrak Formation, Central Graben, Norway. However, porosities of the Skagerrak Formation are lower in the Norwegian sector than in the UK sector. In this study, petrographic analysis, core examination, scanning electron microscopy, elemental mapping, carbon and oxygen isotope, fluid inclusion and microgeometry analysis are performed to determine the diagenesis and direct influence on reservoir quality, with particular focus on the role played by carbonate cementation. The sandstones are mainly fine-grained lithic-arkosic to sub-arkosic arenites and display a wide range of intergranular volumes (2.3%–43.7% with an average of 23.6%). Porosity loss is mainly due to compaction (av. 26.6%) with minor contribution from cementation (av. 12.1%). The carbonate cements are patchy in distribution (from trace to 20.7%) and appear as various types e.g. calcretes (i.e. calcareous concreted gravels), poikilitic sparite and sparry ferroan dolomite, and euhedral or/and aggregated ankerite/ferroan dolomite crystals. This study highlights the association of carbonate precipitation with the remobilisation of carbonate from intra-Skagerrak calcretes during early burial stage i.e. <500 m. During deeper burial, compaction is inhibited by carbonate cements, resulting high intergranular volume of up to 32% and 29% for fine- and medium-grained sandstones, respectively. Carbonate cement dissolution probably results from both meteoric water flow with CO2 during shallow burial, and organic CO2 and carboxylic acid during deep burial. The maximum intergranular volume enhanced by dissolution of early carbonate cements is calculated to 8% and 5% for fine- and medium-grained sandstones, respectively. Compaction continues to exert influence after dissolution of carbonate cements, which results in a loss of ∼6% intergranular volume for fine- and medium-grained sandstones. Reservoir quality of the Norwegian sector is poorer than that of the UK sector due to a lower coverage of clay mineral coats e.g. chlorite, later and deeper onset of pore fluid overpressure, lower solubility of carbonate compared to halite, and a higher matrix content.  相似文献   

3.
This study demonstrates the utilization of 2D basin models to address overpressure development due to compaction disequilibrium in supra-allochthonous salt mini-basins with very high sedimentation rates in the Gulf of Mexico. By properly selecting 2D line sections with moderate stratigraphic resolution, it is possible to predict timing of overpressure development and approximate present-day overpressure distributions in the mini-basin. This study shows that even low resolution models with approximate information on the net-to-gross (sand:shale ratio) can average ±0.4 ppg with a maximum error of 1.0 ppg relative to pressure measurements in sandstones. The models based on age, depth, approximate lithology and an interpretation of complicated salt movement are adequate to evaluate pressure to address issues around trap containment and may be used for preliminary well planning. This study tested the results of overpressure prediction utilizing different stratigraphic resolutions and shows the sensitivity of overpressure modeling to 2D line selection. Also, three models were built to investigate how the permeability of salt welds affects overpressure development in an adjacent salt mini-basin. These results indicate that even a salt weld permeability reduction of 1.5 log mD results in a pressure difference between neighboring mini-basins. Additionally, these models qualitatively reproduced the seismic velocity volume which is supporting evidence that the salt welds in this mini-basin are at least partially sealing.  相似文献   

4.
Most of the methods currently used for pore pressure prediction in sedimentary basins assume one-dimensional compaction based on relationships between vertical effective stress and porosity. These methods may be inaccurate in complex tectonic regimes where stress tensors are variable. Modelling approaches for compaction adopted within the geotechnical field account for both the full three-dimensional stress tensor and the stress history. In this paper a coupled geomechanical-fluid flow model is used, along with an advanced version of the Cam-Clay constitutive model, to investigate stress, pore pressure and porosity in a Gulf of Mexico style mini-basin bounded by salt subjected to lateral deformation. The modelled structure consists of two depocentres separated by a salt diapir. 20% of horizontal shortening synchronous to basin sedimentation is imposed. An additional model accounting solely for the overpressure generated due to 1D disequilibrium compaction is also defined. The predicted deformation regime in the two depocentres of the mini-basin is one of tectonic lateral compression, in which the horizontal effective stress is higher than the vertical effective stress. In contrast, sediments above the central salt diapir show lateral extension and tectonic vertical compaction due to the rise of the diapir. Compared to the 1D model, the horizontal shortening in the mini-basin increases the predicted present-day overpressure by 50%, from 20 MPa to 30 MPa. The porosities predicted by the mini-basin models are used to perform 1D, porosity-based pore pressure predictions. The 1D method underestimated overpressure by up to 6 MPa at 3400 m depth (26% of the total overpressure) in the well located at the basin depocentre and up to 3 MPa at 1900 m depth (34% of the total overpressure) in the well located above the salt diapir. The results show how 2D/3D methods are required to accurately predict overpressure in regions in which tectonic stresses are important.  相似文献   

5.
An example of diagenesis and reservoir quality of buried sandstones with ancient incursion of meteoric freshwater is presented in this study. The interpretation is based on information including porosity and permeability, petrography, stable isotopic composition of authigenic minerals, homogenization temperatures (Th) of aqueous fluid inclusions (AFIs), and pore water chemistry. These sandstones, closely beneath or far from the regional unconformity formed during the late Paleogene period, are located in the thick Shahejie Formation in the Gaoliu area of Nanpu Sag, Bohai Bay Basin, East China. Early-diagenetic calcite cements were leached to form intergranular secondary pores without precipitation of late-diagenetic calcite cements in most sandstones. Feldspars were leached to form abundant intragranular secondary pores, but with small amounts of concomitant secondary minerals including authigenic quartz and kaolinite. The mass imbalance between the amount of leached minerals and associated secondary minerals suggests that mineral leaching reactions occurred most likely in an open geochemical system, and diagenetic petrography textures suggest that advective flow dominated the transfer of solutes from leached feldspars and calcites. Low salinity and ion concentrations of present pore waters, and extensive water rock interactions suggest significant incursion of meteoric freshwater flux in the sandstones. Distances of the sandstones to the regional unconformity can reach up to 1800 m, while with significant uplift in the Gaoliu area, the burial depth of such sandstones (below sea level) can be less than 800–1000 m during the uplift and initial reburial stage. Significant uplift during the Oligocene period provided substantial hydraulic drive and widely developed faults served as favorable conduits for downward penetration of meteoric freshwater from the earth's surface (unconformity) to these sandstone beds. Extensive feldspar leaching has been occurring since the uplift period. Coupled high Th (95∼115 °C) of AFI and low δ18O(SMOW) values (+17∼+20‰) within the quartz overgrowths show that quartz cementation occurred in the presence of diagenetic modified meteoric freshwater with δ18O(SMOW) values of −7∼−2‰, indicating that authigenic quartz only have been formed during the late reburial stage when meteoric fresh water penetration slowed down. Secondary pores in thin sections and tested porosity suggest that meteoric freshwater leaching of feldspars and calcite minerals generated approximately 7–10% enhanced secondary porosity in these sandstones. Meteoric freshwater leaching reactions cannot be ignored in similar sandstones that located deep beneath the unconformity, with great uplift moving these sandstones above or close to sea level and with faults connecting the earth's surface with the sandstone beds.  相似文献   

6.
The c. 500 m thick Middle Jurassic sandstones of the fluvial Bristol Elv and marine Pelion Formations of the East Greenland Basin are evaluated here in order to improve the understanding of the processes that influenced the diagenetic evolution. The study may help to predict the reservoir properties of sandstones affected by magmatism and faulting, both in general and specifically in undrilled areas on- and offshore East Greenland and, in the Vøring Basin on the Mid-Norwegian shelf. The study shows a variety of authigenic mineral phases dominated by quartz cement, carbonate cement, illite and iron-oxide. One of the clear differences between the two formations is the presence of early carbonate-cemented horizons in the marine sandstones; these horizons are inferred to reflect a primary concentration of biogenic clasts and fossil shells. Intense quartz cementation occurs primarily in the fluvial sandstones but the marine sandstones are also highly quartz-cemented. Two episodes of burial and uplift are recorded in the diagenetic sequence and widespread grain-crushing in coarse-grained intervals is believed to result from overpressure and subsequent compaction due to sudden pressure release along major faults. Maximum burial depths may only have been around 2000–2500 m. Cathodoluminescence analyses show that grain crushing was followed by intense quartz cementation. The quartz cement is to a great deal believed to have formed due to increased surface area from crushing of detrital quartz grains, creating fresh nucleation sites for the quartz. Cathodoluminescence investigations also show that only minor pressure dissolution has taken place between detrital quartz grains and that the ubiquitous quartz cementation displays several growth zones, and was thus in part the result of the introduction of silica-rich extra-formational fluids related to the flow of hot fluids along reactivated faults and increased heat flow and temperature due to magmatism. This interpretation is supported by fluid inclusion homogenization temperatures between 117 and 158 °C in quartz cements. In one of the two study areas, the development of macroscopic stylolites has significantly enhanced quartz cementation, probably in connection with thermal convection flow. As a result of the magmatic and fault-related quartz cementation and illitization, the reservoir quality of the sandstone formations deteriorated and changed drastically.  相似文献   

7.
The Lower Cretaceous Britannia Sandstone Formation comprises deep-water sandstones deposited in the Witch Ground Graben, Outer Moray Firth, UK North Sea. The sandstones form a major gas condensate reservoir stratigraphically trapped against the Fladen Ground Spur. Although the first-order architecture is a simple northwards-thinning wedge, the lower part of the reservoir has a high degree of internal heterogeneity. The presence of thick debrites interleaved with or replacing sandstone units suggests that large-scale remobilisation has significantly impacted the sandstone distribution. This paper aims to reconstruct the style, geometry and history of the remobilisation over a 20 km2, densely drilled area of the Britannia Field, focussing on the lower reservoir interval where remobilisation is thought to be prevalent. The study is based on documentation of approximately 2000 ft (610 m) of high quality core from 11 wells, together with wireline data from an additional 26 wells. Two main phases of remobilisation are recognised, each associated with excision surfaces removing up to 45 m of previously deposited stratigraphy. These surfaces are overlain by debrites that can be an order of magnitude thinner than the inferred excision depths, so that up to 40 m of differential topography was created as a consequence of the remobilisation. Subsequent sandstone intervals are shown to heal this differential topography, giving rise to a simple layer-like, large-scale architecture despite the complex internal remobilisation-induced heterogeneity. Remobilisation has thus affected the sand-body geometry both by removing previously deposited sand intervals and by controlling the thickness distribution of subsequent sandstones. Integration of the model with data from uncored wells shows that spatial variability may in some areas occur on distances smaller than current core-spacing (450 m), diminishing the geometric predictive value of the model in these areas. The fully mixed nature of the debrites is interpreted to indicate efficient transformation of the remobilised mass into a debris flow, controlling the highly evacuated morphology of the failure area. This link between morphology and process is used to characterise the Britannia remobilisation morphotype and place it into existing mass wasting classifications.  相似文献   

8.
The Kuqa Foreland Basin (KFB) immediately south of the South Tianshan Mountains is a major hydrocarbon producing basin in west China. The Kelasu Thrust Belt in the basin is the most favorable zone for hydrocarbon accumulations. Widespread overpressures are present in both the Cretaceous and Paleogene reservoirs with pressure coefficients up to 2.1. The tectonic compression process in KFB resulted from the South Tianshan Mountains uplift is examined from the viewpoint of the overpressure generation and evolution in the Kelasu Thrust Belt. The overpressure evolution in the reservoir sandstones were reconstructed through fluid inclusion analysis combined with PVT and basin modeling. Overpressures at present day in the mudstone units in the Kelasu Thrust Belt and reservoir sandstones of the Dabei Gas Field and the Keshen zone are believed to have been generated by horizontal tectonic compression. Both disequilibrium compaction and horizontal tectonic compression are thought to contribute to the overpressure development at present day in the reservoir of the Kela-2 Gas Field with the reservoir sandstones showing anomalously high primary porosities and low densities from wireline log and core data. The overpressure evolution for the Cretaceous reservoir sandstone in the Kelasu Thrust Belt evolved through four stages: a normal hydrostatic pressure (>12–5 Ma), a rapidly increasing overpressure (∼5–3 Ma), an overpressure release (∼3–1.64 Ma) and overpressure preservation (∼1.64–0 Ma). Overpressure developed in the second stage (∼5–3 Ma) was generated by disequilibrium compaction as tectonic compression due to the uplift of the Tianshan Mountains acted at the northern monocline of KFB from 5 Ma to 3 Ma, which provided abundant sediments for the KFB and caused the anomalously high sedimentation rate during the N2k deposition. From 3 Ma to 1.64 Ma, the action of tectonic compression extended from the northern monocline to the Kelasu Thrust Belt and returned to the northern monocline of KFB from 1.64 Ma to present day. Therefore, the horizontal tectonic compression was the dominant overpressure mechanism for the overpressure generation in the third stage (∼3–1.64 Ma) and overpressure caused by disequilibrium compaction from 5 Ma to 3 Ma was only preserved in the Kela-2 Gas Field until present day.  相似文献   

9.
A pressure simulator modelling the dynamic overpressure history in sedimentary basins is developed using a pressure compartment methodology. Simple models for porosity reduction are used for controlling pressure generation, and different empirical models are used to estimate the lateral and vertical sealing/dissipation mechanisms. The equations describing the flow of formation water between the pressure compartments are used to calculate the resulting pressure dissipation on a geological time scale. The methodology is tested and applied to the Jurassic Fangst Group in the Halten Terrace area, offshore Norway. Dynamic allocation and an explicit numerical solution technique ensure a fast and accurate solution of the flow equations. The results suggest: (a) the probable mechanisms and processes that have generated the overpressure, (b) the timing and location of hydraulic fracturing and (c) the nature and behaviour of the overpressure in addition to the overpressure history.  相似文献   

10.
An In Situ Ultraviolet Spectrophotometer (ISUS) was coupled to a benthic chamber to characterize the bisulfide flux emanating from a warm spring at the Extrovert Cliff locality within Monterey Bay, California. The chamber was periodically flushed with bottom seawater to reset chemical concentrations, which enabled deployments over multiple days. Data from several deployments, each lasting at least 10 days, were used to calculate flow rates, fluid concentrations, and fluxes over time. The bisulfide concentration of the fluid entering the chamber varied from 75 to 4500 μmol l?1. Positive temperature anomalies up to 3.5° were associated with these elevated concentrations. Linear flow rates ranged from 2 to >17 m day?1, while the bisulfide fluxes varied from 0.2 to 80 mol m?2 day?1. The bisulfide originated at depth and was not produced in the surface sediments via an anaerobic oxidation of methane coupled to sulfate reduction. Tides modulated the flow as well as the composition of the fluid entering the chamber. It appeared that a deep sourced fluid, which supplied the bisulfide, was mixed with a second, ambient seawater-like fluid before entering the flux chamber. At low tides, flow rates were at their highest and the contribution of the deep sourced fluid to the fluid entering the chamber was at a maximum.  相似文献   

11.
Pore-throat size is a very crucial factor controlling the reservoir quality and oiliness of tight sandstones, which primarily affects rock-properties such as permeability and drainage capillary pressure. However, the wide range of size makes it difficult to understand their distribution characteristics as well as the specific controls on reservoir quality and oiliness. In order to better understand about pore-throat size distribution, petrographic, scanning electron microscopy (SEM), pressure-controlled mercury injection (PMI), rate-controlled mercury injection (RMI), quantitative grain fluorescence (QGF) and environmental scanning electron microscopy (ESEM) investigations under laboratory pressure conditions were performed on a suite of tight reservoir from the fourth member of the Lower Cretaceous Quantou Formation (K1q4) in the southern Songliao Basin, China. The sandstones in this study showed different types of pore structures: intergranular pores, dissolution pores, pores within clay aggregates and even some pores related to micro fractures. The pore-throat sizes vary from nano- to micro-scale. The PMI technique views the pore-throat size ranging from 0.001 μm to 63 μm and revealed that the pore-throats with radius larger than 1.0 μm are rare and the pore-throat size distribution curves show evident fluctuations. RMI measurements indicated that the pore size distribution characteristics of the samples with different porosity and permeability values look similar. The throat size and pore throat radius ratio distribution curves had however significant differences. The overall pore-throat size distribution of the K1q4 tight sandstones was obtained with the combination of the PMI and RMI methods. The permeability is mainly contributed by a small part of larger pore-throats (less than 30%) and the ratio of the smaller pore-throats in the samples increases with decreasing permeability. Although smaller pore-throats have negligible contribution on reservoir flow potential, they are very significant for the reservoir storage capacity. The pore-throats with average radius larger than 1.0 μm mainly exist in reservoirs with permeability higher than 0.1mD. When the permeability is lower than 0.1mD, the sandstones are mainly dominated by pore-throats with average radius from 0.1 μm to 1.0 μm. The ratio of different sized pore-throats controls the permeability of the tight sandstone reservoirs in different ways. We suggest that splitting or organizing key parameters defining permeability systematically into different classes or functions can enhance the ability of formulating predictive models about permeability in tight sandstone reservoirs. The PMI combined with QGF analyses indicate that oil emplacement mainly occurred in the pore-throats with radius larger than about 0.25–0.3 μm. This result is supported by the remnant oil micro-occurrence evidence observed by SEM and ESEM.  相似文献   

12.
Mud volcanoes, mud cones, and mud ridges have been identified on the inner portion of the crestal area, and possibly on the inner escarpment, of the Mediterranean Ridge accretionary complex. Four areas containing one or more mud diapirs have been investigated through bathymetric profiling, single channel seismic reflection profiling, heat flow measurements, and coring. A sequence of events is identified in the evolution of the mud diapirs: initially the expulsion on the seafloor of gasrich mud produces a seafloor depression outlined in the seismic record by downward dip of the host sediment reflectors towards the mud conduit; subsequent eruptions of fluid mud may create a flat topped mud volcano with step-like profile; finally, the intrusion of viscous mud produces a mud cone.The origin of the diapirs is deep within the Mediterranean Ridge. Although a minimum depth of about 400 m below the seafloor has been computed from the hydrostatic balance between the diapiric sediments and the host sediments, a maximum depth, suggested by geometric considerations, ranges between 5.3 and 7 km. The presence of thermogenic gas in the diapiric sediments suggests a better constrained origin depth of at least 2.2 km.The heat flow measured within the Olimpi mud diapir field and along a transect orthogonal to the diapiric field is low, ranging between 16 ± 5 and 41 ± 6 mW m–2. Due to the presence of gas, the thermal conductivity of the diapiric sediments is lower than that of the host hemipelagic oozes (0.6–0.9 and 1.0–1.15 W m–1 K–1 respectively).We consider the distribution of mud diapirs to be controlled by the presence of tectonic features such as reverse faults or thrusts (inner escarpment) that develop where the thickness of the Late Miocene evaporites appears to be minimum. An upward migration through time of the position of the décollement within the stratigraphic column from the Upper Oligocene (diapiric sediments) to the Upper Miocene (present position) is identified.  相似文献   

13.
14.
A large-scale enigmatic mound structure (M1) has been discovered in middle Miocene strata of the Norwegian–Danish Basin, c. 10 km east and updip of the Central Graben. It is located about 1 km beneath the seabed and clearly resolved by a 3D seismic data set focused on the deeper, remobilised, sand-filled Siri Canyon. M1 comprises two culminations, up to 80 m high and up to 1400 m long, constituting a sediment volume of some 5.3 × 107 m3. It is characterized by a hard reflection at the top, a soft reflection at the base, differential compaction relative to the surrounding sediments, and 10 ms TWT velocity pull up of underlying reflections, indicating a relatively fast mound fill, attributed to the presence of sand within the mound. Internal seismic reflections are arranged in an asymmetric concentric pattern, suggesting a progressive aggradation to the NW, downstream to a mid-Miocene contour current system. Numerous elongated pockmarks occur in the upper Miocene succession close to the mound and indicate that the study area was influenced by gas expulsion in the mid- and late Miocene.The reflection configuration, velocity, dimensions, regional setting, and isolated location can best be explained by interpreting the mound as a giant sand volcano extruded >1 km upward from the Siri Canyon during the middle Miocene (c. 15 Ma). The likely causes of this remarkable structure include gas charge and lateral pressure transfer from the Central Graben along the Siri Canyon reservoir. While this is the first such structure described from this part of the North Sea, similar-aged sand extrudites have recently been inferred from seismic observations in the North Viking Graben, thus suggesting that the mid-Miocene was a time of widespread and intense sediment remobilization and fluid expulsion in the North Sea.  相似文献   

15.
Natural fractures observed within the Lower Jurassic shales of the Cleveland Basin show evidence that pore pressure must have exceeded the lithostatic pressure in order to initiate horizontal fractures observed in cliff sections. Other field localities do not show horizontal fracturing, indicating lower pore pressures there. Deriving the burial history of the basin from outcrop, VR and heat-flow data gives values of sedimentation rates and periods of depositional hiatus which can be used to assess the porosity and pore pressure evolution within the shales. This gives us our estimate of overpressure caused by disequilibrium compaction alone, of 11 MPa, not sufficient to initiate horizontal fractures. However, as the thermal information shows us that temperatures were in excess of 95 °C, secondary overpressure mechanisms such as clay diagenesis and hydrocarbon generation occurred, contributing an extra 11 MPa of overpressure. The remaining 8.5 MPa of overpressure required to initiate horizontal fractures was caused by fluid expansion due to hydrocarbon generation and tectonic compression related to Alpine orogenic and Atlantic opening events. Where horizontal fractures are not present within the Lower Jurassic shales, overpressure was unable to build up as high due to proximity to the lateral draining of pressure within the Dogger Formation. The palaeopressure reconstruction techniques used within this study give a quick assessment of the pressure history of a basin and help to identify shales which may currently have enhanced permeability due to naturally-occurring hydraulic fractures.  相似文献   

16.
Density, biomass and community structure of macrofauna were estimated together with several sediment characteristics at seven stations ranging from 208 m to 4460 m water depth along the OMEX transect in the Goban Spur area (NE Atlantic) during three seasons (October 1993, May 1994, and August 1995). Median grain size decreased with increasing water depth and showed no differences between the seasons. The percentages of organic carbon and total nitrogen were highest at mid-slope depths (1000 to 1500 m), and were significantly higher in August at the upper part of the slope to a depth of 1500 m. The C:N ratio in the surface layer amounted to 7 to 8 in May, 10 to 12 in August and 14 to 17 in October at all stations (except the deepest at 4460 m, where it was 11 in May and August), indicating arrival of fresh phytodetritus in May, and therefore seasonality in food input to the benthos. Densities of macrofauna decreased exponentially with increasing water depth. Significantly higher densities of macrofauna were found in May at the upper part of the slope to a depth of 1500 m. These differences were mainly due to high numbers of postlarvae of echinoids at the shallowest station and ophiuroids at the deeper stations. Biomass values also decreased with increasing water depth, but biomass was relatively high at the 1000 m station and low at 1500 m, due to relatively high and low mean weights of the individual macrofaunal specimens. No significant differences in biomass were found between the seasons. Respiration was high (15 to 20 mgC·m−2·d−1) in May at the upper part of the slope to a depth of 1000 m and low (1–3 mg C·m−2·d−1) at the deeper part. At the shallowest stations to a depth of 1000 m respiration was highest in May, at the mid-slope stations (1400–2200 m) it was highest in August, whereas the deepest stations (3600 to 4500 m) did not show any differences in respiration rates. In conclusion; seasonal variation in organic input is reflected in denstiy, community structure and activity of the macrofauna along the continental slope in the NE Atlantic.  相似文献   

17.
Particulate biogenic barium (bio-Ba) fluxes obtained from three instrumented arrays moored in the Alboran Sea, the westernmost basin in the Mediterranean Sea, are presented in this study. The mooring lines were deployed over almost 1 year, from July 1997 to May 1998, and were equipped with sediment traps at 500–700 m depth, 1000–1200 m depth and 30 m above the seafloor (1000–2200 m). The results obtained support the growing body of evidence that the relationship between particulate bio-Ba and Corg throughout the water column in margin systems is clearly different from this relation in the open ocean. In the Alboran Sea, the annual averaged bio-Ba fluxes range from 0.39 to 1.07 μmol m−2 day−1, with mean concentrations of 1.31–1.69 μmol g−1 and bio-Ba/Corg ratios lower than in the open ocean. The low bio-Ba values obtained also indicate that calculating bio-Ba is extremely sensitive to the detrital Ba/Al ratio of each sample. The lithogenic Ba fraction in the Alboran Sea continental margin area contributes between 24% and 85% of the total Ba. Increased bio-Ba export efficiency was observed after periods of high primary productivity and suggests that the processes limiting the bio-Ba formation in the study area relate to settling dynamics of organic matter aggregates. Furthermore, the ballasting effect of the abundant lithogenic and carbonate particles may limit decomposition of organic matter aggregates and enhance the transfer of particles rich in Corg and relatively poor in bio-Ba to the deep seafloor. Lateral input of freshly sedimented biogenic material, including particulate bio-Ba, has been observed on the lower continental slope in the western Alboran Sea. These observations emphasize that the use of the bio-Ba as a proxy of export productivity from the surface ocean must be used cautiously in highly dynamic environments such as those in the Alboran Sea.  相似文献   

18.
Through the Upper Jurassic and Lower Cretaceous gravity-flow sandstones were deposited in the Danish Central Graben. These gravity-flow sandstones were deposited within mudstones of the Farsund Formation which is the main source rock in the area, and they are thus potential oil and gas reservoirs. The petrography and geochemistry of the sandstones show good intra well relations and several local geographical relations, which may indicate that they were derived from multiple locally sourced flows and not merely by one basin-axial flow system. The gravity-flow sandstones deposited in the eastern part of the basin are less mature and richer in, especially, carbonates and albite compared to previously deposited Jurassic sandstones and simultaneously deposited sandstones in the western part of the Danish area. This may indicate a division of the basin in an eastern and a western provenance province. This study addresses the provenance of the gravity-flow sandstones by petrographical and geochemical analyses in order to derive possible shared detrital sources as a means of understanding the transport system(s) of the gravity flows.  相似文献   

19.
H.N Siddiquie 《Marine Geology》1975,18(1):M95-M101
The Laccadive atolls have recently been surveyed in detail (1:5,000 and 1:10,000). These surveys indicated the occurrence of a number of terraces on the seaward reefs of these islands at 7–12, 15, 21–36 (prominent) and 43–47 m depths. The first break in the profile of the seaward reefs occurs at depths of 3–5 m and on the windward side this extends down to about 12 m, the break at this shallow depth represents a wave-cut platform. The deeper terraces (>12 m) appear to have been formed during periods of lowered sea level. The most prominent terrace at 21–36 m is correlable with similar terraces recorded on other atolls. The terraces at Bangaram Island are covered by sediment while those at Kadmat do not have any sediment. In some of the atolls, surfaces at depths comparable to the seaward terraces are found in the lagoons also indicating extensive effects of lowered sea levels.  相似文献   

20.
Differences in fluids origin, creation of overpressure and migration are compared for end member Neogene fold and thrust environments: the deepwater region offshore Brunei (shale detachment), and the onshore, arid Central Basin of Iran (salt detachment). Variations in overpressure mechanism arise from a) the availability of water trapped in pore-space during early burial (deepwater marine environment vs arid, continental environment), and b) the depth/temperature at which mechanical compaction becomes a secondary effect and chemical processes start to dominate overpressure development. Chemical reactions associated with smectite rich mud rocks in Iran occur shallow (∼1900 m, smectite to illite transformation) causing load-transfer related (moderate) overpressures, whereas mechanical compaction and inflationary overpressures dominate smectite poor mud rocks offshore Brunei. The basal detachment in deepwater Brunei generally lies below temperatures of about 150 °C, where chemical processes and metagenesis are inferred to drive overpressure development. Overall the deepwater Brunei system is very water rich, and multiple opportunities for overpressure generation and fluid leakage have occurred throughout the growth of the anticlines. The result is a wide variety of fluid migration pathways and structures from deep to shallow levels (particularly mud dykes, sills, laccoliths, volcanoes and pipes, fluid escape pipes, crestal normal faults, thrust faults) and widespread inflationary-type overpressure. In the Central Basin the near surface environment is water limited. Mechanical and chemical compaction led to moderate overpressure development above the Upper Red Formation evaporites. Only below thick Early Miocene evaporites have near lithostatic overpressures developed in carbonates and marls affected by a wide range of overpressure mechanisms. Fluid leakage episodes across the evaporites have either been very few or absent in most areas. Locations where leakage can episodically occur (e.g. detaching thrusts, deep normal faults, salt welds) are sparse. However, in both Iran and Brunei crestal normal faults play an important role in the transmission of fluids in the upper regions of folds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号