共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
3.
We present a new method for directly determining accurate, self-consistent cluster lens mass and shear maps in the strong lensing regime from the magnification bias of background galaxies. The method relies upon pixellization of the surface mass density distribution which allows us to write down a simple, solvable set of equations. We also show how pixellization can be applied to methods of mass determination from measurements of shear and present a simplified method of application. The method is demonstrated with cluster models and applied to magnification data from the lensing cluster Abell 1689. 相似文献
4.
5.
6.
R.W. Schmidt S.W. Allen A.C. Fabian 《Monthly notices of the Royal Astronomical Society》2001,327(4):1057-1070
We present the analysis of 30 ks of Chandra observations of the galaxy cluster Abell 1835. Overall, the X-ray image shows a relaxed morphology, although we detect substructure in the inner 30-kpc radius. Spectral analysis shows a steep drop in the X-ray gas temperature from ∼12 keV in the outer regions of the cluster to ∼4 keV in the core. The Chandra data provide tight constraints on the gravitational potential of the cluster which can be parametrized by a Navarro, Frenk & White model. The X-ray data allow us to measure the X-ray gas mass fraction as a function of radius, leading to a determination of the cosmic matter density of
. The projected mass within a radius of ∼150 kpc implied by the presence of gravitationally lensed arcs in the cluster is in good agreement with the mass models preferred by the Chandra data. We find a radiative cooling time of the X-ray gas in the centre of Abell 1835 of about
. Cooling-flow model fits to the Chandra spectrum and a deprojection analysis of the Chandra image both indicate the presence of a young cooling flow (∼ with an integrated mass deposition rate of within a radius of 30 kpc. We discuss the implications of our results in the light of recent Reflection Grating Spectrograph (RGS) observations of Abell 1835 with XMM-Newton . 相似文献
. The projected mass within a radius of ∼150 kpc implied by the presence of gravitationally lensed arcs in the cluster is in good agreement with the mass models preferred by the Chandra data. We find a radiative cooling time of the X-ray gas in the centre of Abell 1835 of about
. Cooling-flow model fits to the Chandra spectrum and a deprojection analysis of the Chandra image both indicate the presence of a young cooling flow (∼ with an integrated mass deposition rate of within a radius of 30 kpc. We discuss the implications of our results in the light of recent Reflection Grating Spectrograph (RGS) observations of Abell 1835 with XMM-Newton . 相似文献
7.
Antonio C. C. Guimarães Adam D. Myers Tom Shanks 《Monthly notices of the Royal Astronomical Society》2005,362(2):657-665
We simulated both the matter and light (galaxy) distributions in a wedge of the Universe and calculated the gravitational lensing magnification caused by the mass along the line-of-sight of galaxies and galaxy groups identified in sky surveys. A large volume redshift cone containing cold dark matter particles mimics the expected cosmological matter distribution in a flat universe with low matter density and a cosmological constant. We generate a mock galaxy catalogue from the matter distribution and identify thousands of galaxy groups in the luminous sky projection. We calculate the expected magnification around galaxies and galaxy groups and then the induced quasi-stellar object (QSO)–lens angular correlation due to magnification bias. This correlation is observable and can be used both to estimate the average mass of the lens population and to make cosmological inferences. We also use analytical calculations and various analyses to compare the observational results with theoretical expectations for the cross-correlation between faint QSOs from the 2dF Survey and nearby galaxies and groups from the Automated Plate Measurement and Sloan Digital Sky Survey Early Data Release. The observed QSO–lens anticorrelations are stronger than the predictions for the cosmological model used. This suggests that there could be unknown systematic errors in the observations and data reduction, or that the model used is not adequate. If the observed signal is assumed to be solely due to gravitational lensing, then the lensing is stronger than expected, due to more massive galactic structures or more efficient lensing than simulated. 相似文献
8.
9.
10.
11.
12.
13.
14.
15.
We propose a novel technique to refine the modelling of galaxy cluster mass distribution using gravitational lensing. The idea is to combine the strengths of both 'parametric' and 'non-parametric' methods to improve the quality of the fit. We develop a multiscale model that allows sharper contrast in regions of higher density where the number of constraints is generally higher. Our model consists of (i) a multiscale grid of radial basis functions with physically motivated profiles and (ii) a list of galaxy-scale potentials at the location of the cluster member galaxies. This arrangement of potentials of different sizes allows us to reach a high resolution for the model with a minimum number of parameters. We apply our model to the well-studied cluster Abell 1689. We estimate the quality of our mass reconstruction with a Bayesian Monte Carlo Markov Chain sampler. For a selected subset of multiple images, we manage to halve the errors between the positions of predicted and observed images compared to previous studies. This is due to the flexibility of multiscale models at intermediate scale between cluster and galaxy scale. The software developed for this paper is part of the public lenstool package which can be found at http://www.oamp.fr/cosmology/lenstool . 相似文献
16.
Jonathan Mackey Martin White Marc Kamionkowski 《Monthly notices of the Royal Astronomical Society》2002,332(4):788-798
It has recently been argued that the observed ellipticities of galaxies may be determined at least in part by the primordial tidal gravitational field in which the galaxy formed. Long-range correlations in the tidal field could thus lead to an ellipticity–ellipticity correlation for widely separated galaxies. We present a new model relating ellipticity to angular momentum, which can be calculated in linear theory. We use this model to calculate the angular power spectrum of intrinsic galaxy shape correlations. We show that, for low-redshift galaxy surveys, our model predicts that intrinsic correlations will dominate correlations induced by weak lensing, in good agreement with previous theoretical work and observations. We find that our model produces ' E -mode' correlations enhanced by a factor of 3.5 over B -modes on small scales, making it harder to disentangle intrinsic correlations from those induced by weak gravitational lensing. 相似文献
17.
Paolo Catelan Marc Kamionkowski Roger D. Blandford 《Monthly notices of the Royal Astronomical Society》2001,320(1):L7-L13
We show with analytic models that the assumption of uncorrelated intrinsic ellipticities of target sources that is usually made in searches for weak gravitational lensing arising from large-scale mass inhomogeneities ('field lensing') is unwarranted. If the orientation of the galaxy image is determined either by the angular momentum or by the shape of the halo in which it forms, then the image should be aligned preferentially with the component of the tidal gravitational field perpendicular to the line of sight. Long-range correlations in the tidal field will thus lead to long-range ellipticity–ellipticity correlations that mimic the shear correlations arising from weak gravitational lensing. We calculate the ellipticity–ellipticity correlation expected if halo shapes determine the observed galaxy shape, and we discuss uncertainties (which are still considerable) in the predicted amplitude of this correlation. The ellipticity–ellipticity correlation induced by angular momenta should be smaller. We consider several methods for discriminating between the weak-lensing (extrinsic) and intrinsic correlations, including the use of redshift information. An ellipticity–tidal-field correlation also implies the existence of an alignment of images of galaxies near clusters. Although the intrinsic alignment may complicate the interpretation of field-lensing results, it is inherently interesting as it may shed light on galaxy formation as well as on structure formation. 相似文献
18.
19.
PeterColes 《Monthly notices of the Royal Astronomical Society》2002,330(2):421-424
The dynamical equations describing the evolution of a self-gravitating fluid can be rewritten in the form of a Schrödinger equation coupled to a Poisson equation determining the gravitational potential. This approach has a number of interesting features, many of which were pointed out in a seminal paper by Widrow & Kaiser. In particular we show that this approach yields an elegant reformulation of an idea of Jones concerning the origin of lognormal intermittency in the galaxy distribution. 相似文献