首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present paper will be to extend our new methods of analysis of the light curves, of eclipsing binary systems, consisting of spherical components, by Fourier approach to eclipses oftransit type — which arise when the eclipsing component happens to be smaller of the two. Our present principal concern will be transit eclipses, terminating in annular phase, of stars characterized by arbitrary radially-symmetrical distribution of brightness over their apparent discs — a phenomenon which will cause the light of the system to vary continuously during annular phase. In the first section which follows this abstract, an outline of the problem at issue will be given. Section 2 has been devoted to an analysis of light changes arising in the course of partial phases of transit eclipses; and the concluding Section 3 will contain an analysis of the corresponding light changes, during annular phase. Unlike for occultation eclipses considered in our previous paper (cf. Kopal, 1975b), the momentsA 2m of the light curves due to eclipses of transit type can again be expressed in terms of the geometrical elements of such eclipses in a closed form for limb darkening characterized by any value ofn; but the use of such functions will require auxiliary tables (now in preparation) for applications to practical cases. A parallel treatment of partial eclipses of the occultation or transit type — eclipses which stop short of totality or annular phase — is being postponed for a subsequent communication.  相似文献   

2.
The aim of the present paper will be to pioneer a new approach to the analysis of the light changes of eclipsing binary systems in the frequency domain, and to point out its merits in comparison with a conventional treatment of the same problem in the time-domain which has been developed so far. Following an introductory section in which the broad features of our problem will be set forth, Section 2 will contain an outline, and critique, of the time-domain approach. Section 3 will give an explicit treatment of the light changes arising from total and annular eclipses in the frequency domain — a problem which we succeeded in solving in close algebraic form. Section 4 will extend this treatment to the case of partial eclipses; and in the concluding Section 5 the relative merits of our new results will be discussed in broader perspective. Sections 3 and 4 contain explicit results pertaining to mutual eclipses of spherical stars exhibiting uniformly bright discs. An extension of these results to the case of arbitrary limb-darkening, and taking account of mutual distortion of both components, will be given in subsequent communications.  相似文献   

3.
The aim of this paper is to extend the Fourier approach to the transit eclipses, terminating in annular phase, with an application to YZ Cassiopeiae. The results turn out to be more complicated than those obtained by Kopal for total eclipses. However, the solution can still be obtained by successive approximations without resorting to any tables of special functions.Section 1 contains an outline of the problem. In Section 2, the evaluation of the theoretical momentsA 2m for transit eclipses is given. An application of the Fourier method to the light curves of YZ Cas is presented in Section 3. Finally, in Section 4, a general discussion of the results is given.  相似文献   

4.
The aim of the present paper is to establish the explicit forms of the photometric perturbations, in the frequency-domain, of close binaries, whose components are distorted by axial rotation and mutual tidal action.Following a brief introduction, Section 2 describes the light changes and the photometric perturbations within eclipses in the frequency-domain. In Section 3 the explicit forms of the perturbations for occultation eclipses terminating in totality are given; while in Section 4 analogous results are established for transit eclipses terminating in annular phases. In this latter case the results can be expressed in terms of the photometric perturbations for total eclipses and in terms of some series. To facilitate applications to actual stars these series have been computed and their results are represented in Table I and by the Graphs. Finally, Section 5 gives a discussion of the results.An extension of the photometric perturbations to the case of partial eclipses will be given in a subsequent communication.  相似文献   

5.
The aim of the present paper will be to utilize the results obtained in the preceding papers of this series for the development of practical procedures for obtaining the elements of any eclipsing system from the observed photometric data by their analysis in the frequency-domain, for any type of eclipses, any proximity of the two components, and any degree of the law of limbdarkening of the eclipsed star.In Section 2, which follows a brief introduction to the subject, procedures will be developed which should permit us to perform such an analysis — by hand or automatic machine computation — for the case of mutual eclipses in binary systems the components of which can be regarded as spheres; and whose apparent discs are characterized by an arbitrary radially symmetrical distribution of surface brightness. In Section 3 we shall generalize these procedures to systems consisting of arbitrarily distorted stars.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May, 1978.  相似文献   

6.
The aim of the present paper has been to establish explicit expressions for the photometric perturbations in the light changes of close eclipsing systems, arising from the mutual distortion of the components, for any type of eclipses — be these occultations or transits; partial, total, or annular — and exhibiting arbitrary distribution of brightness (limb- or gravity-darkening) over the apparent disc of the eclipsed star.These perturbations have been expressed in terms of certain general types of series that can be easily programmed for automatic computation. They represent a generalization of results previously obtained by Kopal (1975) or Livaniou (1977, 1978) in so far as the expansions derived in this paper hold good for any real (not necessarily integral) value ofm>0. As such, they can be used to free from the photometric proximity effects within eclipses the empirical momentsA 2m of the light curves of non-integral orders, and the task performed within seconds of real time on high-speed automatic computers now available. Closed-form expressions for such perturbations, obtaining in the case of total eclipses, are given correctly to terms of first order in quantities which represent the distortion of each component.  相似文献   

7.
In the present paper n 0 , for occulation and transit eclipses of partial phases, are evaluated numerically by means of the Runge-Kutta methods. Section 2 contains the required differential equations of n 0 with respect to the modulusX orC, and Section 3 includes the numerical method of the solutions of these differential equations. Theoretical values of 0 0 and 1 0 , with corresponding values ofC, are also added in this section.  相似文献   

8.
The main aim of this paper will be to develop explicit form of the moments of the light curvesA 2m(r 1,r 2,i) required for the solution for the geometrical elementsr 1,2 andi of eclipsing systems exhibiting annular eclipses (Sections 2 and 3), as well as partial eclipses (Section 4).In the concluding Section 5 we shall demonstrate that — regardless of the type of eclipse and distribution of brightness on the apparent disc of the eclipsed star, or indeed of the shape of the eclipsing as well as eclipsed components — the momentsA 2m satisfy certain simple functional equations — a fact which relates them to other classes of functions previously studied in applied mathematics.  相似文献   

9.
The methods of analysis of the light changes of eclipsing variables in the frequency domain, developed in our previous papers (Kopal, 1975b, c) for total or annular eclipses of arbitrarily limbdarkened stars, have now been extended to the case of partial eclipses of occultation as well as transit type. In Section 2 which follows brief introductory remarks the even Fourier sine coefficients are formulated — in the guise of the momentsA 2m of the light curve — in terms of the elements of the eclipse; and their use for a solution for the elements is detailed in Section 3. A brief appendix containing certain auxiliary tables to facilitate this task concludes the paper. An extension of the same method to an analysis of the light changes exhibited by close eclipsing systems — in which the photometric proximity effects arising from mutual distortion can no longer be ignored — will be given in the subsequent paper of this series.  相似文献   

10.
The aim of the present paper is to find the eclipse perturbations, in the frequency-domain, of close eclipsing systems exhibiting partial eclipses.After a brief introduction, in Section 2 we shall deal with the evaluation of thea n (l) integrals for partial eclipses and give them in terms ofa 0 0 ,a 0 0 (of the associated -functions) and integrals; while Section 3 gives the eclipse perturbations arising from the tidal and rotational distortion of the two components. The are given for uniformly bright discs (h=1) as well as for linear and quadratic limb-darkening (h=2 and 3, respectively).Finally, Section 4 gives a brief discussion of the results and the way in which they can be applied to practical cases.  相似文献   

11.
The aim of the present paper will be to introduce a new definition of the loss of light suffered by mutual eclipses of the components of close binary systems: namely, as across-correlation of two apertures representing the eclipsing and eclipsed discs.The advantages of such a strategy over the more conventional (geometrical) approach are (a) greater symmetry of the respective expressions; (b) greater affinity of expressions arising from distortion with those expressing the light changes due to eclipses of spherical stars; and (c) greater freedom in dealing with the effects of particular distribution of brightness over the disc of the star undergoing eclipse (generalized limb-darkening), as well as of possible semi-transparency of the eclipsing component (Wolf-Rayet stars!). In point of fact, none of these tasks could be handled with equal ease by any other technique; nor could the corresponding loss of light be so automated by any other approach.In Section 2 which follows brief introductory remarks we shall evaluate the loss of light arising from distribution of brightness within the aperture undergoing eclipse, and appropriate opacity of the occulting disc. In Section 3 we shall take advantage of these new forms of our results to deduce a number of new properties of the eclipse functions — both algebraic and differential — which have so far escaped attention and which are of considerable practical interest. Lastly, in Section 4 we shall generalize the same concepts to the modification of the light changes caused by the departures of the respective apertures from circular forms.It will be shown that all these phenomena can be most naturally described in terms of Hankel transforms of the products of two Bessel functions with orders depending on the physical characteristics (distribution of brightness; opacity) of the two components; while the geometry of the system (i.e., the fractional radiir 1,2 of the two stars; or the inclinationi of their orbit) enter only through their arguments. Such formulation of our problem should bring a theory of the light changes of eclipsing variables in much closer contact with the adjacent parts of physical optics.  相似文献   

12.
The aim of the present paper will be to develop methods for computation of the Fourier transforms of the light curves of eclipsing variables — due to any type of eclipses — as a function of a continuous frequency variablev. For light curves which are symmetrical with respect to the conjunctions (but only then) these transforms prove to be real functions ofv, and expressible as rapidly convergent expansions in terms of the momentsA 2m+1 of the light curves of odd orders. The transforms are found to be strongly peaked in the low-frequency domain (attaining a maximum forv=0), and become numerically insignificant forv>3. This is even more true of their power spectra.The odd momentsA 2m+1 — not encountered so far in our previous papers — are shown in Section 3 of the present communication to be expressible as infinite series in terms of the even momentsA 2m well known to us from Papers I–IV; and polynomial expressions are developed for approximating them to any desired degree of accuracy. The numerical efficiency of such expressions will be tested in Section 4, by application to a practical case, with satisfactory results.Lastly, in Section 5, an appeal to the Wiener-Khinchin theorem (relating the power spectra with autocorrelation function of the light curves) and Parseval's theorem on Fourier series will enable us to extend our previous methods for a specification of quadratic moments of the light curves in terms of the linear ones.  相似文献   

13.
The aim of the present paper has been to generalize the methods previously developed for analysis of the light changes of eclipsing binary systems in the frequency-domain to cases in which the components of such systems revolve in eccentric orbits. It is shown that these methods can indeed be generalized to systems with eccentric orbits provided that the light momentsA 2m deduced from such eclipses are suitably re-defined in terms of the true, rather than mean, anomaly in the relative orbit; and that due attention is paid to the unit of length in terms of which the fractional radii of the two stars are expressed. When this is done the Fourier methods continue to be applicable to all types of eclipses exhibited by eccentric binary systems — whether these are occultations or transits; total, annular or partial.An application of these methods to practical cases has been postponed for a subsequent communication.  相似文献   

14.
The aim of the present paper will be to detail the procedure outlined in our previous investigations (Kopal, 1975; Kopalet al., 1976) for a solution of the elements of distorted eclipsing systems by a Fourier analysis of their light changes. This procedure—which constitutes an equivalent, in the frequency-domain, of rectification hitherto practised in the time-domain — should enable us to free the observed momentsA 2m of the light curves from all photometric effects of distortion (between minima as well as within eclipses) — a feat impossible in the time-domain except under very restricted conditions — and thus to make it possible to obtain the geometrical elements of the eclipses which should be free from any obvious source of systematic errors.  相似文献   

15.
The photometric perturbationsB h (l) arising from both tidal and rotational distortion of a close eclipsing binary have been given in two previous papers (Livaniou, 1977; Rovithis-Livaniou, 1977). The aim of the present paper will be to find the eclipse perturbationsB 2m =B 2m, tid +B 2m, rot of a close binary exhibiting partial eclipses. This will be done giving the suitable combinations of theB h (l) 's and will make easier the application to real stars. After a very brief introduction, Section 2 gives both theB 2m, tid andB 2m, rot for uniformly bright discs; while in Sections 3 and 4 they are given for linear and quadratic limb-darkening, respectively. Finally, Section 5 gives a brief discussion of the results.  相似文献   

16.
The aim of the present paper has been to present an analysis of the light curve of two eclipsing systems RW Gem and AY Cam by Fourier analysis of the light changes in the frequency domain which was developed by Kopal (1975a, b, c, d, e; 1976).In Section 1, the subject is introduced in a general way, with the intention of laying the foundation of the light curve analysis. Section 2 contains the evaluation of the empirical values of the theoretical momentA 2m is demonstrated, with the equation of the condition given. Then the equations forA 2m in terms of the elements of the total and the annular eclipses, including partial and annular phase of transit eclipse, follow.The analysis of the light curves of the two eclipsing binaries (RW Gem and AY Cam), the results and the discussion of our solution, are outlined in Section 3.  相似文献   

17.
The aim of the present paper will be to make use of the expressions, established in Paper XI, for the fractional loss of light l 0 of arbitrarily limb-darkened stars in the form of Hankel transforms of zero order, in order to evaluate the explicit forms of the l 0's for different types of eclipses (Section 2), as well as of the momentsA 2mof the respective light curves (Section 3)-in a closed form; or in terms of expansions that converge under all circumstances envisaged. Particular attention will be directed to a connection between these expansions and other functions already available in tabular form; or to alternative forms amenable to automatic computation.  相似文献   

18.
The aim of the present paper will be to generalize the methods for computation of the elements of eclipsing binary systems in the frequency-domain, summarized in our recent Paper I (Kopal, 1981), to the case ofclose systems, in which photometric proximity effects become conspicuous and must be taken into account before the methods previously outlined in Paper I become directly applicable.Following a brief introduction to the subject given in Section 1, Section 2 summarizes (and comments upon) the difficulties previously encountered in separation of the photometric proximity and eclipse effects. In Section 3 we develop an alternative new approach to the problem by modulation of the light curves throughout the entire orbital cycle, intended to filter out proximity effects from the observed light changes and isolate those due to eclipses; while in Section 4 we shall present a numerical application of the new method to an analysis of the observed light changes of the eclipsing system W Ursae Maioris.In Section 5 we shall present a quantitative investigation of the photometric effects of distortion on the light changes of close eclipsing systems within eclipses-the most complicated part of the whole problem-with numerical application to the system of U Sagittae carried out in the concluding Section 6.Appendices 1–3 contain numerical data which should facilitate application of the methods developed and illustrated in Sections 3–4; while Appendix 4 will be reserved for a mathematical proof of certain expansions used in Section 5, which would have been too discursive for the main text.  相似文献   

19.
In the present study the photometric perturbations arising from the mututal tides of the two components in a close binary system are calculated and discussed. The evaluation is made for each star separately as well as for both stars together in the case of occulation eclipses terminating in totality.  相似文献   

20.
The aim of the present paper will be to develop from the fundamental equations of hydrodynamics a theory of dynamical tides in close binary systems, the components of which are regarded to consist of heterogeneous viscous fluid, and to revolve around their common centre of gravity in eccentric orbits; moreover, the equatorial planes of their axial rotation and the orbital plane need not be co-planar, but all may be inclined to the invariable plane of the system of arbitrary amounts. The changes in the pressure or density invoked by time-dependent deformation will be regarded as adiabatic; but, in the equilibrium state, both the density and viscosity of the material of our components may be arbitrary functions of the radial distance.Following a brief exposition in Section 2 of the fundamental equations linearized to small oscillations — be these free or forced — in Section 3 we shall particularize them to describe spheroidal deformations; with due regard to all terms arising from viscosity. Section 4 will contain a specification of the boundary conditions to be imposed upon such oscillations; and in Section 5 we shall solve the problem of non-radial oscillations of self-gravitating inviscid configurations in terms of hypergeometric series. The remaining Sections 6–8 will be devoted to a discussion of the phenomena arising from viscosity: in particular, we shall solve in a closed form the problem of non-radial oscillations of incompressible viscous globes in the terms of Bessel functions. It will be shown that the effect of viscosity — like those of compressibility — tend to de-stabilize all non-radial oscillations of homogeneous configurations.At the other extreme, a similar treatment of a mass-point model — as well as of one exhibiting high but finite degree of central condensation — is being postponed for a subsequent communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号