首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pakuashan anticline is uniquely suited for study of the forward and lateral growth of fault-related folds. The Pakuashan ridge development arises from the late Quaternary uplift of the most external thrust zone of the western foothills of Taiwan. From Kaoshiung to Taichung, recent and active westward thrusting occurs at the front of the foothills. The Pakuashan anticline, trending N 150°E in the northern part to N 000° in the southern part, has been active throughout the Quaternary period. This activity is marked by geological structures, tectonic geomorphology and seismicity. A multisource and multiscale approach to study of the continental collision setting has been undertaken to combine tectonics, sedimentology and geomorphology. Studies of fracture patterns allow identification of two main features of stress orientations: a WNW/ESE compression direction, and E–W and N–S extension directions. Quantitative geomorphic parameters have been used to define the morphotectonic evolution and to infer tectonic style along the mountain front. Geomorphic evidence provides significant information on the processes that govern lateral propagation of an active anticline. Quaternary terraces are uplifted, tilted and folded over the Pakuashan ridge. Drainage systems in areas of active compression give information on the thrust zone structures and their development. Steep drainage and high local relief indicate that the Pakuashan anticline forms a well-defined zone of high uplift, especially in the southern part. The two main controls on drainage in that area are rock strength in the hanging wall and propagation of the deformation towards the south.  相似文献   

2.
Analysis of accommodation space variation during deposition of the Cretaceous Qingshankou Formation in the Songliao Basin, NE China, indicates that accommodation space changed both through time and across the basin as a seesaw movement. The mid‐upper Qingshankou Formation is divided into three units. In each unit, changes of accommodation space differ in the southern and northern part of the basin. Increasing accommodation in the southern part is accompanied by a decrease in the northern part, and vice versa. Between the northern and southern basin, there was a neutral belt that is like a fulcrum, called the transformation belt here, where the accommodation did not change to any significant degree. We call this response ‘accommodation transformation’, whose characteristics are defined by tectonic subsidence analysis, palaeontological and sedimentary analyses. The accommodation increasing belt, decreasing belt, transformation belt and accommodation transformation boundary together constitute the accommodation transformation system. The recognition of accommodation transformation in the Songliao Basin provides a new insight into sequence stratigraphy and might be widely applicable.  相似文献   

3.
The Berzeliustinden area forms part of the Tertiary fold-and-thrust belt of western Spitsbergen. The relations of a basement-involved thrust fault, decollement structures, and a fault repeating part of the stratigraphy are investigated. The deforming mechanism is thought to be'wedging'of a basement-involved thrust block into bituminous shaly beds of the overlying strata. The thrust fault thus does not continuously cut through to the surface, but lifts the overlying strata, forming a backward directed bedding-parallel thrust fault on top of the wedge. The presence of two bituminous shale formations, both potential splitting mediums for the wedge, complicates the structures. Many structural observations from adjacent areas of the fold-and-thrust belt also fit with this model. It is suggested that thrust wedges are common tectonic elements in the belt and might also be present further east beneath the relatively undeformed Tertiary strata of central Spitsbergen.  相似文献   

4.
The stratigraphical organization of the Pliocene thrust‐top deposits cropping out at the front of the Southern Apennine thrust‐belt has been debated for a long time taking a great importance in the context of the geodynamics of the Central Mediterranean area. During this time, spreading episodes in the Apennine backarc zone alternate with important phases of overthrusting in the thrust‐belt. As a consequence, the Pliocene succession appears to be arranged in a series of stacked units, recording the poliphase tectonic history that leads to the building of the front of the southern Apennine thrust‐belt. Although there is not yet an accordance on the nature and position of the main unconformities bounding the thrust‐top units, all authors agree that the creation of new accommodation space is mainly ruled by contractional tectonics consequent to the eastward nappe propagation according to the Apennine vergence polarity. A detailed geological survey, carried out along a large portion of southern Apennine thrust‐belt front, running south of the Vulture volcano, allowed the collecting of new data concerning the basinal‐formation mechanisms acting during the sedimentation of Pliocene deposits. From this analysis, it is clear that even if contractional tectonics is the predominant factor controlling the creation or destruction of accommodation space, other mechanisms, as well as wedge uplift‐related extensional tectonics and eustasy, could have also played a significant role in the basin accommodation. In order the considered sector of southern Apennines can provide an useful example about the complex phenomena occurring at mountain belt front where the accommodation space results from a concomitance of eustatic and tectonic factors mainly linked to the accretionary wedge activity.  相似文献   

5.
Foreland basin systems   总被引:32,自引:1,他引:32  
A foreland basin system is defined as: (a) an elongate region of potential sediment accommodation that forms on continental crust between a contractional orogenic belt and the adjacent craton, mainly in response to geodynamic processes related to subduction and the resulting peripheral or retroarc fold-thrust belt; (b) it consists of four discrete depozones, referred to as the wedge-top, foredeep, forebulge and back-bulge depozones – which of these depozones a sediment particle occupies depends on its location at the time of deposition, rather than its ultimate geometric relationship with the thrust belt; (c) the longitudinal dimension of the foreland basin system is roughly equal to the length of the fold-thrust belt, and does not include sediment that spills into remnant ocean basins or continental rifts (impactogens). The wedge-top depozone is the mass of sediment that accumulates on top of the frontal part of the orogenic wedge, including ‘piggyback’ and ‘thrust top’ basins. Wedge-top sediment tapers toward the hinterland and is characterized by extreme coarseness, numerous tectonic unconformities and progressive deformation. The foredeep depozone consists of the sediment deposited between the structural front of the thrust belt and the proximal flank of the forebulge. This sediment typically thickens rapidly toward the front of the thrust belt, where it joins the distal end of the wedge-top depozone. The forebulge depozone is the broad region of potential flexural uplift between the foredeep and the back-bulge depozones. The back-bulge depozone is the mass of sediment that accumulates in the shallow but broad zone of potential flexural subsidence cratonward of the forebulge. This more inclusive definition of a foreland basin system is more realistic than the popular conception of a foreland basin, which generally ignores large masses of sediment derived from the thrust belt that accumulate on top of the orogenic wedge and cratonward of the forebulge. The generally accepted definition of a foreland basin attributes sediment accommodation solely to flexural subsidence driven by the topographic load of the thrust belt and sediment loads in the foreland basin. Equally or more important in some foreland basin systems are the effects of subduction loads (in peripheral systems) and far-field subsidence in response to viscous coupling between subducted slabs and mantle–wedge material beneath the outboard part of the overlying continent (in retroarc systems). Wedge-top depozones accumulate under the competing influences of uplift due to forward propagation of the orogenic wedge and regional flexural subsidence under the load of the orogenic wedge and/or subsurface loads. Whereas most of the sediment accommodation in the foredeep depozone is a result of flexural subsidence due to topographic, sediment and subduction loads, many back-bulge depozones contain an order of magnitude thicker sediment fill than is predicted from flexure of reasonably rigid continental lithosphere. Sediment accommodation in back-bulge depozones may result mainly from aggradation up to an equilibrium drainage profile (in subaerial systems) or base level (in flooded systems). Forebulge depozones are commonly sites of unconformity development, condensation and stratal thinning, local fault-controlled depocentres, and, in marine systems, carbonate platform growth. Inclusion of the wedge-top depozone in the definition of a foreland basin system requires that stratigraphic models be geometrically parameterized as doubly tapered prisms in transverse cross-sections, rather than the typical ‘doorstop’ wedge shape that is used in most models. For the same reason, sequence stratigraphic models of foreland basin systems need to admit the possible development of type I unconformities on the proximal side of the system. The oft-ignored forebulge and back-bulge depozones contain abundant information about tectonic processes that occur on the scales of orogenic belt and subduction system.  相似文献   

6.
An extensive, reprocessed two‐dimensional (2D) seismic data set was utilized together with available well data to study the Tiddlybanken Basin in the southeastern Norwegian Barents Sea, which is revealed to be an excellent example of base salt rift structures, evaporite accumulations and evolution of salt structures. Late Devonian–early Carboniferous NE‐SW regional extensional stress affected the study area and gave rise to three half‐grabens that are separated by a NW‐SE to NNW‐SSE trending horst and an affiliated interference transfer zone. The arcuate nature of the horst is believed to be the effect of pre‐existing Timanian basement grain, whereas the interference zone formed due to the combined effect of a Timanian (basement) lineament and the geometrical arrangement of the opposing master faults. The interference transfer zone acted as a physical barrier, controlling the facies distribution and sedimentary thickness of three‐layered evaporitic sequences (LES). During the late Triassic, the northwestern part of a salt wall was developed due to passive diapirism and its evolution was influenced by halite lithology between the three‐LES. The central and southeastern parts of the salt wall did not progress beyond the pedestal stage due to lack of halite in the deepest evaporitic sequence. During the Triassic–Jurassic transition, far‐field stresses from the Novaya Zemlya fold‐and‐thrust belt reactivated the pre‐salt Carboniferous rift structures. The reactivation led to the development of the Signalhorn Dome, rejuvenated the northwestern part of the salt wall and affected the sedimentation rates in the southeastern broad basin. The salt wall together with the Signalhorn Dome and the Carboniferous pre‐salt structures were again reactivated during post‐Early Cretaceous, in response to regional compressional stresses. During this main tectonic inversion phase, the northwestern and southeastern parts of the salt wall were rejuvenated; however, salt reactivation was minimized towards the interference transfer zone beneath the centre of the salt wall.  相似文献   

7.
Three successive zones of fault‐related folds disrupt the proximal part of the northern Tian Shan foreland in NW China. A new magnetostratigraphy of the Taxi He section on the north limb of the Tugulu anticline in the middle deformed zone clarifies the chronology of both tectonic deformation and depositional evolution of this collisional mountain belt. Our ~1200‐m‐thick section encompasses the upper Cenozoic terrigenous sequence within which ~300 sampling horizons yield an age span of ~8–2 Ma. Although the basal age in the Taxi He section of the Xiyu conglomerate (often cited as an indicator of initial deformation) is ~2.1 Ma, much earlier growth of the Tugulu anticline is inferred from growth strata dated at ~6.0 Ma. Folding of Neogene strata and angular unconformities in anticlines in the more proximal and distal deformed zones indicate deformation during Miocene and Early Pleistocene times, respectively. In the Taxi He area, sediment‐accumulation rates significantly accelerate at ~4 Ma, apparently in response to encroaching thrust loads. Together, growth strata, angular unconformities, and sediment‐accumulation rates document the northward migration of tectonic deformation into the northern Tian Shan foreland basin during the late Cenozoic. A progradational alluvial–lacustrine system associated with this northward progression is subdivided into two facies associations at Tugulu: a shallow lacustrine environment before ~5.9 Ma and an alluvial fan environment subsequently. The lithofacies progradation encompasses the time‐transgressive Xiyu conglomerate deposits, which should only be recognized as a lithostratigraphic unit. Along the length of the foreland, the locus of maximum shortening shifts between the medial and proximal zones of folding, whereas the total shortening across the foreland remains quite homogeneous along strike, suggesting spatially steady tectonic forcing since late Miocene times.  相似文献   

8.
We present the results of finite element modelling of the recent stress field in the Pannonian basin and surrounding Alpine orogenic belt. Our results show that the recent, predominantly compressive, stress regime in the Alpine–Pannonian–Carpathian–Dinaric system is governed by distinct tectonic factors. Of great importance is the deformation of crustal blocks with different geometries and rigidities in an overall convergent setting associated with the Africa–Europe collision. The most important stress source appears to be the counterclockwise rotation of the Adriatic microplate at the southwest boundary of the Pannonian basin. This plate tectonic unit has been interpreted as moving independently of both the European plate and the African plate. Additional boundary conditions—active shortening and compression in the Vrancea zone and the Bohemian Massif, and the effect of the immobile Moesian Platform—also significantly influence the modelling results. The incorporation of additional stress sources such as crustal thickness variation and the presence of two main fault zones separating the primary tectonic units in the study area have only locally important effects but improve the fit between the calculated results and the observed stress pattern.  相似文献   

9.
位于青藏高原东南部的横断山区,是我国东部环太平洋区与西部古地中海区间的交接过渡地带,也是我国地质结构最为复杂的一个区域。作者根据1981—1985年在当地考察资料,将本区分出5条具洋壳性质的强变形构造带,2块具陆壳性质的地块,它们相间并列。文章论述了各条块的发育特征及区域演化历史。  相似文献   

10.
ABSTRACT The Pan-African Gariep Belt in south-western Namibia and westernmost South Africa provides an excellent window into the interplay between tectonic and climatic changes during the Neoproterozoic era. Recently acquired chemostratigraphic data from cap carbonate sequences above glaciogenic diamictite horizons, together with U–Pb zircon and Pb–Pb carbonate ages, indicate sedimentation in the Gariep Basin from continental break-up around 770 Ma to basin closure and continent collision around 545 Ma. The basin is subdivided into an eastern failed rift graben and a western half graben that evolved into an oceanic basin between the Kalahari and the Rio de la Plata cratons. Three megasequences are distinguished in the external, para-autochthonous part of the belt (Port Nolloth Zone): an early continental, predominantly siliciclastic, sag rift megasequence (M1), a passive continental margin, carbonate-rich megasequence (M2), and a syn-orogenic carbonate and flysch megasequence (M3). Two glaciogenic diamictite horizons at the end of M1 and M2 are recognized and they are correlated with the global ∼750 Ma Sturtian and ∼580 Ma Marinoan glaciations, respectively. While the former is restricted to proximal continental rift shoulders, the latter extends into the oceanic realm which marks the internal part of the belt (Marmora Terrane). Only the younger diamictite is associated with iron formation. The sequence of regressive and transgressive stages recorded by the sediment fill does not reflect simply the tectonic evolution from rifting to drifting and eventual basin closure, but is strongly controlled by severe climatically induced sea-level changes that were either competing with or reinforcing tectonically induced sea-level changes.  相似文献   

11.
Accurate magnetostratigraphic dating of Plio-Pleistocene alluvium in the Palomas half-graben permits correlation of transverse and axial deposits, thus enabling analysis of the movement of alluvial facies belts in time and space for the first time. Northern areas show evidence for basinward progradation of footwall-sourced Matuyama-age alluvial fan deposits over axial channel belt deposits of the ancestral Rio Grande, despite both deposits having similar deposition rates. This gradual ‘forced’ westward migration of the axial belt was in opposition to ongoing eastward growth of hangingwall-sourced fans and tectonic tilt imposed by the bounding Caballo normal fault. Fan growth was coincident with a recently proposed gradual climatic shift that may have increased sediment flux out of transverse catchments. It is also possible that continuing tectonic footwall uplift and divided retreat caused catchment areas to increase, contributing to these trends. Southern areas of the Palomas half-graben feature late Gilbert/early Gauss deposits indicative of rapid westwards progradation of large low-gradient, footwall-sourced fans over axial deposits. This ‘forced’ migration of the ancestral Rio Grande may have occurred due to footwall catchment and fan growth consequent upon initiation and growth of the Red Hills Fault. Subsequent eastward movement of the axial channel belt in late Gauss and Matuyama times overwhelmed these large fans. We attribute this to continued tilting on the Red Hills Fault and to development of the Jornada Fault to the south-east, the axial river belt avulsing north and eastwards through a developing Red Hills/Jornada crossover transfer zone. We conclude generally that facies architecture of axial and transverse elements in half-graben must reflect both climatic influences and the effects of fault development. Careful field mapping, accurate dating and palaeoclimatic studies are all necessary to determine the relative importance of these controls. Although adequate as broad guides, previous purely ‘fixist’ tectonosedimentary models allow for no fault growth, decay or climatic modulation of facies trends and are thus generally inadequate to explain important aspects rift basin stratigraphy.  相似文献   

12.
距今二亿年前的三迭纪晚期一系列之大地构造运动,形成福建沿海的平潭-东山褶皱带,以及长樂-诏安断裂带,又因为构造运动以及岩浆活动的影响,在褶皱带与断裂带的东缘形成一系列的岛屿,马祖列岛的形成,与中国东南沿海的造山运动有密切关系,皆受到影响而产生变动。马祖地区的海阶,共有9 段阶地,各段阶地的海拔高度依序为0~10 m、20~38 m、40~56 m、58~78 m、80~97 m、100~128 m、142~160 m、172~182 m、238~248 m。依据晚更新世海阶序列与隆升率关系对比基图迭合法的推估,各段阶地生成年代分别为6 ka BP、46 ka BP、55 ka BP、76 kaBP、79 ka BP、94 ka BP、105 ka BP、119 ka BP、175 ka BP,除了第一级阶地为全新世时期所形成,其余皆为更新世时期的产物,比对马祖列岛海阶的高度与间距,测得整个地区的基盘平均隆升速率为1.6 mm/a。  相似文献   

13.
Summary. A total of 161 km of deep seismic profiles have been shot in the region. One profile crosses the Protogine zone in SW Sweden. Over most of the profile short, weak reflectors are seen The only area with a concentration of reflectors is in the upper two seconds between the two tectonic zones. A nearly transparent area east of the Protogine zone is interperted as a deep granite intrustion. In the Siljan impact structure where four profiles were shot, the NE part of the structure is dominated by upper crustal high amplitude reflectors. Possible causes are discussed.  相似文献   

14.
Henri Vogt  Thea Vogt 《Geomorphology》2007,86(3-4):480-495
Detailed study of two dry depressions in the Baikal rift system: the E–W Khoito Ghol-Tunka-Bistraya depression and the SW–NE Gusinoje–Ivolga depression, aims to provide a better understanding of tectonic control on the intershoulder relief evolution after the rift opened. Both depressions are grabens and both feature a suite of 10–20 km-wide basins alternating with more or less massive highs. Field and laboratory analysis shows that this pattern is of recent tectonic origin and that local breaking-up and subsidence followed the general sinking which originally formed the grabens. The subsidence belts seem to have gradually shifted north and northeastwards. Geomorphological analysis reveals that in both depressions the highs are remnants of a former pediment which was broken up. The young basins display numerous relevant hydrographic anomalies of the secondary channels and a general water-logging. They also suggest that the subsidence belts have gradually shifted north-and northeastwards. In the Gusinoje–Ivolga depression evidence was found of a Plio-Pleistocene river course, parallel to the Selenga river, which was later dismantled by the breaking-up. This depression, parallel to the Baikal rift and belonging to the Mesozoic system of grabens in the Caledonian fold belt, seems to have been included into the general system of rifts during the Pliocene tectonic phase. As for the main hydrographic axes, the Selenga river was set on a Palaeogene-age planation surface before the first tectonic phase and kept its original course. The Irkut river flowed in the Khoito Gol–Tunka–Bistraya depression after the first tectonic phase and was not affected by the later breaking-up. In contrast, the secondary drainage network is largely discordant. Despite their different geotectonic contexts, the two depressions show a similar development of relief pattern,which poses the question of the style of rift dynamics after the main Pliocene tectonic phase.  相似文献   

15.
Vimal Singh  S.K. Tandon   《Geomorphology》2008,102(3-4):376-394
The Himalayan orogenic belt, formed as a result of collision tectonic processes, shows abundant evidence of neotectonic activity, active tectonics, and the occurrence of historical earthquakes. Its frontal deformation zone is characterized, in some segments, by intermontane longitudinal valleys (duns). Such frontal segments of the Himalaya are marked by the occurrence of multiple mountain fronts.In one such segment of the foothills of the NW Himalaya, the Pinjaur dun is developed and marked by three mountain fronts: MF1A and MF1B associated with the southernmost Himalayan Frontal Thrust (HFT), MF2 associated with the Sirsa fault, and MF3 associated with the Barsar thrust along the southern margin of the relatively higher main part of the sub-Himalaya. Geomorphic responses to the tectonic activity of these and related structural features have been analyzed through the use of geomorphic indices, drainage density, stream longitudinal profiles, drainage anomalies, and hypsometric analysis. Also, fault and fold growth and their expression on landform development was studied using a combination of surface profiles and field observations.The values of valley floor width to height ratio (Vf) for valleys associated with MF1 ranged between 0.07 and 0.74, and for valleys associated with MF2 ranged from 1.02–5.12. Vf for the four major valleys associated with MF1B ranged from 1.1–1.7. The asymmetry factor for 26 drainage basins related to MF1A indicate these have developed under the influence of a transverse structure. These results taken together with those obtained from the Hack profiles and SL index values, hypsometry, drainage density, and drainage anomalies suggest that the faults associated with the mountain fronts and related structures are active.Active tectonics and neotectonic activity have led to the formation of four surfaces in the Pinjaur dun. In addition, an important drainage divide separating the Sirsa and Jhajara drainage networks also developed in the intermontane valley. Surface profile analysis helped in deciphering the growth history of the fault bend fold structures of the outermost Siwalik hills. The effects of tectonic activity on the proximal part of the Indo-Gangetic plains are interpreted from the remarkable river deflections that are aligned linearly over tens of kilometers in a zone about 10 km south of the HFT.Based on these integrated structural and tectonic geomorphological approaches, a morphotectonic evolutionary model of the dun has been proposed. This model highlights the role of uplift and growth history of the fault bend fold structures of the outermost Siwalik hills on (i) the depositional landforms and drainage development of the Pinjaur dun, and (ii) valley development of the outermost Siwalik hills.Importantly, this study postulates the formation of an incipient mountain front that is evolving ahead of the HFT and the outermost Siwalik hills in the Indo-Gangetic plains.  相似文献   

16.
天山北麓流域面积高度积分特征及其构造意义   总被引:2,自引:0,他引:2  
提取了天山北麓河流水系流域的常规地貌计量指标(盆地大小、面积和高差)以及面积高度积分,通过对流域面积高度积分曲线形态特征、面积高度积分值的分析,结合区域地质构造活动,探讨了面积高度积分对板内再生造山带新构造活动的指示意义以及天山北麓流域的地貌发育过程。研究表明,北天山流域的次集水盆地面积高度积分与次集水盆地的面积和高差都没有相关性,堆积作用和轻微构造抬升作用都会影响冲积扇区次集水盆地,使其面积高度积分值偏高。河流面积高度积分曲线形态和面积高度积分值在空间分布上的差异,反映了天山北麓3排逆断裂褶皱带的不同的构造活动特征。面积高度积分曲线的循环形态特征,揭示了强烈构造运动与河流剥蚀作用影响面积高度曲线形态发育的动态演绎过程。  相似文献   

17.
Relationships between tectonic framework and gravity-driven phenomena have been investigated in an area of the Central Apennines (Italy) characterised by high relief. The north–south, half-dome shaped Maiella anticline lies in the easternmost part of the Apennine fold-and-thrust belt. Its backlimb is bordered by the Caramanico Fault, a normal fault with a maximum downthrown of about 3.5 km that separates the western slope of the Maiella Massif from the Caramanico Valley. The southwestern Maiella area is affected by deep-seated gravitational slope deformation indicated by major double crest lines, down-hill and up-hill facing scarps, a pattern of crossing trenches, bulging at the base of slopes and the presence of different types of landslide and talus slope deposits.The onset and development of deep-seated gravitational slope deformations and the location of Quaternary, massive rockslope failures have been strongly influenced by the structural framework and tectonic pattern of the anticline. Deep-seated gravitational slope deformation at Mt. Macellaro–Mt. Amaro ridge has developed along the Maiella western, reverse slope in correspondence with the anticline axial culmination; it is bordered at the rear by a NNW–SSE oriented, dextral, strike-slip fault zone and has an E–W direction of rock mass deformation. Closer to the southern plunging area of the anticline, gravity-driven phenomena show instead a N–S and NW–SE direction, influenced by bedding attitude.3D topographic models illustrate the relationship between deep-seated gravitational slope deformation and massive rockslope failures. The Campo di Giove rock avalanche, a huge Quaternary failure event, was the result of an instantaneous collapse on a mountaine slope affected by a long-term gravity-driven deformation.  相似文献   

18.
生态交界带特征与动态变化机理分析   总被引:2,自引:0,他引:2  
文章论述了生态交界带是两个以上生态系统交接的过渡带,它具有特有的生态系统结构,生态交界带生态系统的结构,功能和物质,能是以及信息的交流与相邻生态系统有密切的联系,但又表现出明显的异质性,其动态变化机理显示生态交界带内物质,能量和信息的均衡状况。  相似文献   

19.
We present results of three sand-box experiments that model the association between tectonic accretion and sedimentation in a forearc basin. Experimental sedimentation occurs step by step in the forearc basin during shortening of the sand wedge. In each experiment, the development of the accretionary wedge leads to the formation of a major backthrust zone. This major deformation zone accounts for the thickening in the rear part of the wedge. In natural settings this tectonic bulge dams sediments that are transported toward the trench from mountainous terrain behind the forearc. We test the variation of friction along the déollement and note the following: (1) shortening of a low-friction wedge involves a mechanical balance between forethrusts and backthrust propagation and this balance is recorded by the sedimentary sequence trapped in the forearc basin. Indeed, if most of the movement occurs along the backthrust, the deepening of the basin will be larger and consequently the thickness of the sedimentary sequence will be greater. (2) Such balance does not exist in the case of a high-friction wedge. (3) Variation of friction along the décollement during shortening of the sand wedge leads to modification in the forearc basin filling. Thus, for similar increments of convergence, the sequence deposited in the forearc basin shows relatively larger thickness when the wedge is shortened above a high-friction décollement. We suggest that contraction and thickening in the rear part of the wedge is an efficient mechanism to, initiate and develop a forearc basin. Thus, this kind of basin occurs in convergent settings, without collapse related to local extension or tectonic erosion. They represent a sedimentary trap on a passive basement, bounded by a tectonic bulge. The Quaternary Hikurangi forearc basin, southeast of the North Island of New Zealand, is bounded by two actively uplifting ridges. Thus, this basin is considered to be a possible example of the basins modelled in our experiments, and we suggest that the limit between the basin and the wedge could be a complex backthrust zone.  相似文献   

20.
A network of 26 GPS sites was implemented in Iran and Northern Oman to measure displacements in this part of the Arabia–Eurasia collision zone. We present the GPS velocity field obtained from three surveys performed in 1999 September, 2001 October and 2005 September and the deduced strain tensor. This study refines previous studies inferred from only the two first surveys. Improvements are significant in NE Iran. The present-day shortening rate across the mountain belts of NE Iran is estimated to 5 ± 1 mm yr−1 at about N11°, 2 ± 1 mm yr−1 of NS shortening across the eastern Kopet Dag and 3 ± 1 mm yr−1 of NS shortening across Binalud and Kuh-e-Sorkh. Our GPS measurements emphasize the varying character of the Kopet Dag deformation between its southeastern part with prevailing thrusting at low rates and its northwestern part with dominant strike-slip activity at increasing rates. The principal axes of the horizontal strain tensor appears very homogeneous from the Zagros to the Alborz and the Kopet-Dag (N20°) and in eastern Iran (Makran and Lut block: N30°). Only NW Iran suffers a variable strain pattern which seems to wrap the Caspian basin. The strain tensor map underlines the existence of large homogeneous tectonic provinces in terms of style and amplitude of the deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号