首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
INTRODUCTIONTheoceanicfinestructureintheEastChinaSea (ECS)Kuroshioregionhadbeenstudiedbyvariousresearchers.Fangetal.(1 988)studiedthefeaturesofthefinestructureinthesouthernshelfareaandtheKuroshioareaintheECSbyusingCTDdata .Baoetal.(1 996)analyzedsomefeaturesofthermohalinefinestructureandrevealeditsrelationwiththewatermassesandcurrentssysteminthenorthernECS .ButoceanicfinestructureintheeasternregionoftheKuroshiohassel dombeenstudied .Inthispaper,basedon 4 2CTDprofilesgatheredinsum…  相似文献   

2.
This article discussed about snow temperature variations and their impact on snow cover parameters. Automatic temperature recorders were used to sample at 10-minute intervals at the Tianshan Station for Snow-cover and Avalanche Research, Chinese Academy of Sciences. 10-layer snow temperature and the snow cover parameters were measured by the snow property analyzer (Snow Fork) in its Stable period, Interim period and Snow melting period. Results indicate that the amplitude of the diurnal fluctuation in the temperature during Snow melting period is 1.62 times greater than that during Stable period. Time up to the peak temperature at the snow surface lags behind the peak solar radiation by more than 2.5 hours, and lags behind the peak atmospheric temperature by more than 0.2 hours during all three periods. The optimal fitted function of snow temperature profile becomes more complicated from Stable period to Snow melting period. 22 h temperature profiles in Stable period are the optimal fitted by cubic polynomial equation. In Interim period and Snow melting period, temperature profiles are optimal fitted by exponential equation between sunset and sunrise, and by Fourier function when solar radiation is strong. The vertical gradient in the snow temperature reaches its maximum value at the snow surface for three periods. The peak of this maximum value occurs during Stable period, and is 4.46 times greater than during Interim period. The absolute value of temperature gradient is lower than 0.1°C cm−1 for 30 cm beneath snow surface. Snow temperature and temperature gradient in Stable period∼Interim period indirectly cause increase (decrease) of snow density mainly by increasing (decreasing) permittivity. While it dramatically increases its water content to change its permittivity and snow density in Snow melting period.  相似文献   

3.
Using hydrographic measurements from three recent surveys in the western tropical Pacific, this study revealed the existence and general features of thermohaline finestructure near the northern Philippine coast. Pronounced finestructures were detected in the layers of the North Pacific Tropical Water (NPTW) and the North Pacific Intermediate Water (NPIW) during all three cruises and shown to be mainly thermohaline intrusions. Characteristics of the intrusions were further investigated with spiciness curvature and salinity anomaly methods. The vertical scale of the intrusions was 20-50m and 50-100m in the NPTW and NPIW layers, respectively. Within the NPTW layer, the Turner angle distribution and correlation between salinity and density anomalies suggested that diffusive convection between surface fresh water and subsurface saline water played an important role in the development and maintenance of the intrusions. In addition, connection between thermohaline finestructure and larger-scale oceanic processes was explored using historical hydrographic data. The results reveal that the salinity field and the distribution of the intrusions in this region were largely determined by mesoscale eddies. As a result of eddy stirring, both isopycnal and diapycnal temperature/salinity gradients were strengthened, which gave rise to the development of thermohaline intrusions. The intrusions acted to enhance heat and salt fluxes and resulted in the mixing of water masses being more efficient. By linking mesoscale eddy stirring to micro-scale diffusion, thermohaline finestructure plays a vital role in the ocean energy cascade and water mass conversion in the northern Philippine Sea.  相似文献   

4.
Accurate information on the spatial distribution and temporal change of wetlands is vital to devise effective measures for their protection. This study uses satellite images in 1994 and 2001 to assess the effects of topography and proximity to channels on wetland change in Maduo County on the Qinghai-Tibet Plateau, western China. In 1994 wetlands in the study area extended over 6,780.0 km2. They were distributed widely throughout the county, with a higher concentration in the south, and were especially prominent close to streams. The pattern of wetlands demonstrated a bell-shaped distribution curve with elevation, ranging over hill slopes with gradients from 0-19°, the commonest gradient being around 3°. Although the aspects of these hill slopes range over all directions, there is a lower concentration of wetlands facing east and southeast. The extent of wetlands in 2001 decreased to 6,181.1 km2. Marked spatial differentiation in the pattern of wetlands is evident, as their area increased by 1,193.3 km2 at lower elevations but decreased by 1,792.2 km2 at higher ground, resulting in a net decrease of 598.8 km2. In areas with a gradient <2° or >9° the area of wetlands remained approximately consistent from 1994-2001. Newly retained wetlands are situated in relatively flat lowland areas, with no evident preference in terms of aspect. Wetlands on north-, east- and northeast-facing hillslopes with a bearing of 1-86° were more prone to loss of area than other orientations. The altered pattern of wetland distribution from higher to lower elevation on north-facing slopes coincided with the doubling of annual temperature during the same period, suggesting that climate warming could be an important cause.  相似文献   

5.
Dimethylsulfide in the South China Sea   总被引:1,自引:0,他引:1  
INTRODUCTIONGreateffortsweredevotedrecentlytostudyingdimethylsulfide(DMS)distributioninseawater,asitaccountsforthemajorpartofthesulfurfluxfromtheoceanstotheatmosphere.Moreover,itsoxidationproductsintheatmospheremayinfluenceenvironmentalacidificationand…  相似文献   

6.
We investigated the abundance of different picophytoplankton groups and the phytoplankton pigment ratio in relation to environmental factors such as nutrients and suspended solids along a salinity gradient in the Changjiang River Estuary. The average numbers of Synechococcus spp.(Syn) and picoeukaryotes(Euk) were(2.7 ±5.1) ×103 and(1.1±1.4) ×103 cells m L-1, respectively. Prochlorococcus spp.(Pro) was only found in the high-salinity brackish water with the concentration of 3.0×103 cells m L-1. Syn and Euk numbers both tended to increase offshore and Syn showed a larger variation in cell abundance than Euk. The contribution of picophytoplankton to total phytoplankton biomass increased with increasing salinity and decreasing nutrient concentrations from the estuary to the open ocean. The response of different picophytoplankton groups to environmental variables was different. Water temperature was more important in its control over Euk than over Syn, while nutrients were more important in their influence over Syn than over Euk. Phytoplankton pigment ratios were different in the three different ecological zones along the salinity gradient(i.e., freshwater zone with 0-5 range, fresh and saline water mixing zone with 5-20 range, and high-salinity brackish water zone with 20-32 range), where three different phytoplankton communities were discovered, suggesting that phytoplankton pigment ratios can be considered as a complementary indicator of phytoplankton community structure in the Changjiang River Estuary.  相似文献   

7.
8.
lwn0DorIONDuringthepastdeade,thestchdilyinewsingkn0wedgeonthewestemequatorialPadfic~ndrculation,espedallythel0w-latitudewesternboundaryimtsOLwnes)inthePadficdrin,wasrnarkedbytheimportantdiscoveryoftwowesternb0undaryundercurmtS,theNcwGuineaCoastalUndemirmt(NGCUC)Oindstrometal.,l987)andtheMindanaoUndemin-ent(MUC)peuandCui,l989),whichledtobeterdescrip-tionoftheverticalstruCture0fthePadficLLwncralth0ughunderstandingofthePadricLLWBChdynawhesisstillincomp1etC,bousetheinfluenceofthetwone…  相似文献   

9.
Picoplankton distribution was investigated in different water masses of the East China Sea in November,2006 and February,2007.The autumn and winter cruises crossed three major water masses:the coastal water mass(CWM),the mixed water mass(MWM),which forms on the continental shelf,and the Kuroshio water mass(KWM).Picoplankton composition was resolved into four main groups by flow cytometry,namely Synechococcus,Prochlorococcus,picoeukaryotes,and heterotrophic bacteria.The average abundances of Synechococcus,picoeukaryotes,and heterotrophic bacteria were(0.63±10.88)×103,(1.61±1.16)×103,(3.39±1.27)×105 cells/mL in autumn and(6.45±8.60)×103,(3.23±2.63)×103,(3.76±1.37)×105 cells/mL in winter,respectively.Prochlorococcus was not found in the CWM and seldom observed in surface samples in either season.However,Prochlorococcus was observed in the MWM and KWM(approximately 10 3 cells/mL) in both autumn and winter.Synechococcus distribution varied considerably among water masses,with the highest levels in KWM and lowest levels in CWM.The depth-averaged integrated abundance of Synechococcus was approximately 5-fold higher in KWM than in CWM,which may be due primarily to water temperature.In the MWM,Synechococcus was resolved as two subgroups;the presence of both subgroups was more common in autumn.Picoeukaryote abundance varied less among water masses than Synechococcus,and heterotrophic bacteria depth-averaged integrated abundance exhibited the smallest seasonal variations with respect to water mass.Correlation analysis showed that relationships between picoplankton abundances and environmental factors(temperature,nutrients,and chlorophyll a) differed among the three water masses,suggesting that the three water masses have different effects on picoplankton distribution(particularly Synechococcus).  相似文献   

10.
From Oct. 1999 to Oct. 2000, the heterotrophic bacterial floras in the industrial marine environment around the Qingdao Power Plant (QPP) and in the unpolluted marine environments were investigated. The results showed that the numbers of the heterotrophic bacteria around QPP were much higher than those in unpolluted environments, and the average numbers in QPP Seawater, QPP Sediment, Unpolluted Seawater and Unpolluted Sediment were 5.4×104cfu(mL)−1, 5.0×105cfug−1, 3.0×102cfu(mL)−1 and 1.3×105cfug−1 respectively. Totally, 118 strains were isolated from QPP and 99 of them were Gram-negative. One hundred and twenty one strains were isolated from the unpolluted environments and 104 of them were Gram-negative. All the Gram-negative bacteria belonged to 13 genera. The distribution of the bacteria was varied in different marine environments. The results showed that the unpolluted marine environments contained much more Vibrio than seawater and sediment around QPP.  相似文献   

11.
In order to reveal transpiration rates of wetland plants and its relationships to micro- meterological factors in a mountain valley wetland, relative humidity, air temperature, leaf temperature, soil temperature, photo flux density and transpiration rates were measured once two hours in a Carex meyeriana wetland of the Changbai Mountain valley in dry (July) and wet (September) of 2003, respectively. Results showed that the tendency of "decreasing after increasing" was obvious in wet season. However, a relatively stable trend was observed for the transpiration in dry season.. Generally, the photon flux density of Carex meyeriana was higher in wet season than that in dry season. However, the variabilities of leaf temperature, air temperature and relative humidity were similar in both seasons. Higher transpiration rates of Carex meyeriana leaves were observed in July (varied from 40 to 150 mol.m^-2.s^-1) compared to those (varied from 7 to 14 mol.m^-2.s^-1) in September. Transpiration rates were significantly correlated with air temperature (P〈0.01), leaf temperature (P〈0.01), and wind speed (P〈0.05), but correlationship between relative humidity and photo flux density was not significant (P〈0.05).  相似文献   

12.
Empirical Orthogonal Function (EOF) analysis is used in this study to generate main eigenvector fields of historical temperature for the China Seas (here referring to Chinese marine territories) and adjacent waters from 1930 to 2002 (510 143 profiles). A good temperature profile is reconstructed based on several subsurface in situ temperature observations and the thermocline was estimated using the model. The results show that: 1) For the study area, the former four principal components can explain 95% of the overall variance, and the vertical distribution of temperature is most stable using the in situ temperature observations near the surface. 2) The model verifications based on the observed CTD data from the East China Sea (ECS), South China Sea (SCS) and the areas around Taiwan Island show that the reconstructed profiles have high correlation with the observed ones with the confidence level >95%, especially to describe the characteristics of the thermocline well. The average errors between the reconstructed and observed profiles in these three areas are 0.69°C, 0.52°C and 1.18°C respectively. It also shows the model RMS error is less than or close to the climatological error. The statistical model can be used to well estimate the temperature profile vertical structure. 3) Comparing the thermocline characteristics between the reconstructed and observed profiles, the results in the ECS show that the average absolute errors are 1.5m, 1.4 m and 0.17°C/m, and the average relative errors are 24.7%, 8.9% and 22.6% for the upper, lower thermocline boundaries and the gradient, respectively. Although the relative errors are obvious, the absolute error is small. In the SCS, the average absolute errors are 4.1 m, 27.7 m and 0.007°C/m, and the average relative errors are 16.1%, 16.8% and 9.5% for the upper, lower thermocline boundaries and the gradient, respectively. The average relative errors are all <20%. Although the average absolute error of the lower thermocline boundary is considerable, but contrast to the spatial scale of average depth of the lower thermocline boundary (165 m), the average relative error is small (16.8%). Therefore the model can be used to well estimate the thermocline. Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No.KZCX-3W-222; KZCX2-YW-Q11-02) and National Basic Research Program of China (No.2007CB411802; 2006CB403601)  相似文献   

13.
From the synopical CTD sections in the WOCE PR11 repeated cruises, the South Pacific Subtropical Mode Water (SPSTMW) has been identified in the region of the Tasman Front Extension (TFE) around 29?S to the east of Australia. In the depth range of 150-250 m, the SPSTMW appears as a thermostad with vertical temperature gradient lower than 1.6℃(100 m)-1 and a tem- perature range of 16.5-19.5℃ and as a pycnostad with PV lower than 2×10-10 m-1 s-1 and a potential density range of 25.4-26.0 kg m-3. Like the subtropical mode waters in the North Atlantic and North Pacific, the formation of the SPSTMW is associated with the convective mixing during the austral wintertime as manifested from the time series of the Argo floats. And cold water entrains into the mixed layer with the deepening mixed layer from September to the middle of October. During the wintertime formation process, mesoscale eddies prevailing in the TFE region play an important role in the SPSTMW formation, and have a great effect on the SPSTMW distribution in the next year. The deeper (shallower) mixed layer in wintertime, consistent with the depressed (uplifted) permanent thermocline, is formed by the anticyclonic (cyclonic) eddies, and the substantial mode water thicker than 50 m is mainly found in the region of the anticyclonic eddies where the permanent thermocline is deeper than 450 m.  相似文献   

14.
Rill formation is the predominant erosion process in slope land in the Loess Plateau, China. This study was conducted to investigate rill erosion characteristics and their effects on runoff and sediment yielding processes under different slope gradients at a rate of 10°, 15°, 20° and 25° with rainfall intensity of 1.5 mm min-1 in a laboratory setting. Results revealed that mean rill depth and rill density has a positive interrelation to the slope gradient. To the contrary, width-depth ratio and distance of the longest rill to the top of the slope negatively related to slope gradient. All these suggested that increasing slope steepness could enhance rill headward erosion, vertical erosion and the fragmentation of the slope surface. Furthermore,total erosion tended to approach a stable maximum value with increasing slope, which implied that there is probably a threshold slope gradient where soil erosion begins to weaken. At the same time, the correlation analysis showed that there was a close connection between slope gradient and the variousindices of soil erosion: the correlation coefficients of slope gradient with maximal rill depth, number of rills and the distance of the longest rill from the top of the slope were 0.98, 0.97 and-0.98, respectively,indicating that slope gradient is the major factor of affecting the development of rills. Furthermore,runoff was not sensitive to slope gradient and rill formation in this study. Sediment concentration,however, is positively related to slope gradient and rill formation, the sediment concentrations increased rapidly after rill initiation, especially. These results may be essential for soil loss prediction.  相似文献   

15.
INTRODUCTIONPhytoplaktonhasakeyroleinthemarineecosystemasthebasicpartinthefoodchain ,whichisimportantinformationforassessingproductivitypotentialandfisheryresources.Phytoplanktonalsohasanimportantroleinthecarbonbiogeochemicalcycle,becauseitcanabsorbala…  相似文献   

16.
Shoot density, standing crop (above- and below-ground biomass) and habitat of salt marsh grass Porteresia coarctata were investigated along the coast of Bakkhali estuary, Cox’s Bazar, Bangladesh from January to December 2006. Shoot density of P. coarctata was influenced by season and was found to be higher (>2 500 shoots/m 2 ) in post-monsoon and minimal in monsoon season; plants were particularly active in vegetative propagation during pre-monsoon. Above-ground biomass was greater along the protected coast compared with the exposed one in this estuary. Below-ground biomass was higher (7.75-269.53 g DW/m 2 ) than that above ground (2.20-114.75 g DW/m 2 ). Standing crops of P. coarctata showed a negative relationship (R=-0.77; P<0.05) with sedimentation rate, while seasonal activity influenced sedimentation. The recorded sedimentation rate was lower (6.09 mg/(cm 2 ·d)) in pre-monsoon and highest (14.55 mg/(cm 2 ·d)) in monsoon season. The mean value of pore water salinity was higher (34.25±5.05) during post-monsoon and lowest (18.0±3.71) in monsoon season. The soil was sandy clay in this P. coarctata bed; it consisted of 86% sand, 13% clay and 1% silt. Soil organic matter dropped during the monsoon season (0.78%-0.67%) and was highest ((2.17±1.42)%-(2.3±1.47)%) during post-monsoon, probably owing to accumulation of decomposed peat on the marsh surface. The mean pore water NH 4 -N concentration ranged from 2.44±1.65 to 3.33±1.82 μg/L, with a minimum air temperature of 22.09°C in post-monsoon and a maximum of 31.16°C in pre-monsoon. Variations of physico-chemical parameters in the soil, water, and climate governed biological parameters of P. coarctata in the Bakkhali estuary, and were comparable with estuarine environments elsewhere.  相似文献   

17.
The distributions of particulate and dissolved dimethylsulfoxide(DMSOp, DMSOd) were studied for the first time in the surface water of the South China Sea(SCS) in January 2010. The concentrations of DMSOp ranged from 2.6 to 56.8 nmol L~(-1) with an average of 11.1 ± 2.2 nmol L~(-1), and those of DMSOd ranged from 11.8 to 335.1 nmol L~(-1) with an average of 50.0 ± 16.5 nmol L~(-1). DMSOd dominated over both dimethylsulfide(DMS) and dissolved dimethylsulfoniopropionate(DMSPd) by 1–3 orders of magnitude and represented the major dissolved dimethyl sulfur pool. In addition, DMSOp/chlorophyll-a ratios varied from 2.7 to 180.7 mmol g~(-1) with an average of 30.5 ± 9.6 mmol g~(-1). DMSOd concentrations displayed a significant negative relationship with sea surface temperature(SST) and sea surfaces salinity(SSS) in the whole study area. The distribution of DMSOd in the coastal waters was obviously influenced by the Pearl River discharge, with high concentrations appearing around the river mouth. In the offshore waters, a significant correlation was observed between the DMSOp and DMSOd concentrations, suggesting that DMSOd was mainly from the diffusion of intracellular DMSO rather than from the photochemical and biological oxidation of DMS.  相似文献   

18.
The Mw 7.8 Gorkha earthquake in Nepal on April 25, 2015, produced thousands of landslides in the Himalayan mountain range. After the earthquake, two field investigations along Araniko Highway were conducted. Then, using remote sensing technology and geographic information system(GIS)technology, 1481 landslides were identified along the Bhote Koshi river. Correlations between the spatial distribution of landslides with slope gradient and lithology were analyzed. The power-law relationship of the size distribution of earthquake-induced landslides was examined in both the Higher Himalaya and Lesser Himalaya. Possible reasons for the variability of the power exponent were explored by examining differences in the geological situations of these areas. Multi-threshold cellular automata were introduced to model the complexity of system components. Most of the landslides occurred at slope gradients of 30°–40°, and the landslide density was positively correlated with slope gradient. Landslides in hard rock areas were more common than in soft rock areas. The cumulative number-area distribution of landslides induced by the Gorkha earthquake exhibited a negative power-law relationship, but the power exponents were different: 1.13 in the Higher Himalaya, 1.36 and Lesser Himalaya. Furthermore,the geological conditions were more complex and varied in the Lesser Himalaya than in the Higher Himalaya, and the cellular automata simulation results indicated that, as the complexity of system components increased, the power exponent increased.Therefore, the variability of the power exponent of landslide size distribution should ascribe to the complexity of geological situations in the Bhote Koshi river watershed.  相似文献   

19.
Continuous observation of sea water temperature and current was made at Wenchang Station (19°35′N, 112°E) in 2005. The data collected indicate vigorous internal waves of both short periods and tidal and near-inertial periods. The temperature and current time series during 18-30 September were examined to describe the upper ocean internal wave field response to Typhoon Damrey (0518). The strong wind associated with the typhoon, which passed over the sea area about 45 km south of Wenchang Sta- tion on 25 September, deepened the mixed layer depth remarkably. It decreased the mixed layer temperature while increasing the deep layer temperature, and intensified the near-inertial and high-frequency fluctuations of temperature and current. Power spectra of temperature and current time series indicate significant deviations from those obtained by using the deep ocean internal wave models characterized by a power law. The frequency spectra were dominated by three energetic bands: around the inertial frequency (7.75× 10-6 Hz), tidal frequencies (1.010-25 to 2.4×10-5 Hz), and between 1.4×10-4 and 8.3 × 10-4 Hz. Dividing the field data into three phases (before, during and after the typhoon), we found that the typhoon enhanced the kinetic energy in nearly all the frequency bands, es- pecially in the surface water. The passage of Damrey made a major contribution to the horizontal kinetic energy of the total surface current variances. The vertical energy density distribution, with its peak value at the surface, was an indication that the energy in- jected by the strong wind into the surface current could penetrate downward to the thermocline.  相似文献   

20.
The typically sparse or lacking distribution of meteorological stations in mountainous areas inadequately resolves temperature elevation variability. This study presented the diurnal and seasonal variations of the elevation gradient of air temperature in the northern flank of the western Qinling Mountain range,which has not been thoroughly evaluated. The measurements were conducted at 9 different elevations between 1710 and 2500 m from August 2014 to August 2015 with HOBO Data loggers. The results showed that the annual temperature lapse rates(TLRs) for Tmean,Tmin and Tmax were 0.45?C/100 m,0.44?C/100 m and 0.40?C/100 m,respectively,which are substantially smaller than the often used value of 0.60°C/100 m to 0.65°C/100 m. The TLRs showed no obvious seasonal variations,except for the maximum temperature lapse rate,which was steeper in winter and shallower in spring. Additionally,the TLRs showed significant diurnal variations,with the steepest TLR in forenoon and the shallowest in early morning or late-afternoon,and the TLRs changed more severely during the daytime than night time. The accumulated temperature above 0°C,5°C and 10°C(AT0,AT5 and AT10) decreased at a lapse rate of 112.8?C days/100 m,104.5?C days/100 m and 137.0?C days/100 m,respectively. The monthly and annual mean diurnal range of temperatures(MDRT and ADRT) demonstrated unimodal curves along the elevation gradients,while the annual range of temperature(ART) showed no significant elevation differences. Our results strongly suggest that the extrapolated regional TLR may not be a good representative for an individual mountainside,in particular,where there are only sparse meteorological stations at high elevations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号