首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sound attenuation has been solely used to estimate bubble size distributions of bubbly water in the conventional acoustic bubble sizing methods. These conventional methods are useful for the void fraction around 10-6 or lower. However, the change of compressibility in the bubbly water also should be considered in bubble sizing for the void fraction around 10-5 or higher. Recently the sound speed as well as sound attenuation was considered for acoustic bubble size estimation in bubbly water. In this paper, the sound speed estimated from sound attenuation in bubbly water by an iterative method is used for a bubble counting. This new iterative inverse bubble sizing technique is numerically tested for bubble distributions of single-size Gaussian, and power-law functions. The numerical simulation results are in agreement with the given bubble distributions even for the high void fractions of 10-4-10-3. It suggests that the iterative inverse technique can be a very powerful tool for practical use in acoustic bubble counting in the ocean  相似文献   

2.
High-frequency propagation close to an active surf line is explored with 12and 100-kHz propagation paths together with measurements of bubble clouds, bubble size distributions, and waves. Breaking waves inject massive bubble plumes that are mixed downwards from the roller region by intense turbulence. If these injections follow one another at intervals less than the time taken for the bubbles to rise to the surface, acoustic signals will be continuously blocked, forming an acoustical barrier that effectively inhibits any propagation. Occasionally, waves break seaward of this barrier. In this case, dense bubble clouds are mixed down beneath the air entrainment zone, but there is sufficient time for them to disappear before succeeding breakers, allowing intermittent high-frequency propagation recharge the bubble field. The duration and shape of signal dropouts are then determined by the selective removal of bubbles by buoyancy and dissolution. In addition to turbulence created by the air entrainment process, a lower level of continuous background turbulence may be generated by interaction of residual currents with the wave boundary layer. Our observations illustrate the variable character of acoustic blocking by bubble clouds and serve as a basis for quantitative analysis of these effects with a 2D propagation model coupled to 2D models of bubble cloud evolution and background turbulence  相似文献   

3.
By means of an effective equation model for the propagation of pressure waves in a bubbly liquid, the normal modes of oscillation of regions of bubbly liquid in an otherwise pure liquid are calculated for some simple geometries. It is shown that the frequencies of oscillation of such bubble clouds can be much lower than those of the constituent bubbles in isolation and fall well within the range where substantial wind-dependent noise is observed in the ocean. A comparison with some experimental data strongly supports the theoretical results  相似文献   

4.
One of the underlying assumptions in the effective medium theory describing the propagation of acoustic waves through bubble clouds is that the probability of an individual bubble being located at some position in space is independent of the locations of other bubbles. However, bubbles within naturally occurring clouds may be influenced by the dynamics of the fluids in which they are entrained so that they become preferentially concentrated, or clustered, leading to statistical dependence in their positions. For bubble clouds in which the important scattering terms include those with interactions between at least two bubbles, statistical dependence between bubble positions leads to a reduction in the attenuation of the coherent acoustic pressure field from that which would be predicted for a nonclustered bubble cloud. Bubble clustering can be accommodated in effective medium theories using correlation functions describing the relationship between the positions of the bubbles. For double scattering, the two-bubble correlation (i.e., the pair correlation function) must be used, for triple scattering, the three bubble correlation must be used, and so on. In contrast to the three attenuation of the coherent field, making the assumption of independent bubble positions leads to an underestimate of the incoherent field. Both the coherent and incoherent acoustic fields for bubble clouds exhibiting correlated bubble positions are explored in this paper with the use of numerical simulations.  相似文献   

5.
As a part of the Asian Seas International Acoustic Experiment (ASIAEX) in the East China Sea, sound propagation signals from wideband explosive sources were measured using a 32-element vertical line array. Measurements were made as a function of range in two perpendicular tracks. Sea-bed geoacoustic parameters based on a fluid half-space geoacoustic model (sound speed, density, and attenuation) are inverted from the sound propagation in the frequency range 100-500 Hz. The sea-bed sound speed and density were first derived from mode arrival time differences which were obtained using a spatial mode filtering technique. Sea-bed acoustic attenuation was subsequently estimated by comparing measured transmission loss with model results.  相似文献   

6.
We compare the performance of four different bubble-sensing techniques in a range of environment from the surf zone to the open ocean: a remote sensing method using high-frequency backscatter, two in situ methods using an acoustical resonator and a pulse propagation sensor, and a bulk method using electrical conductivity. Comparisons between the techniques show general consistency within the appropriate operational bubble density ranges, although spatial variability in bubble clouds introduces substantial variance. Each technique has its strengths and limitations. Our acoustical resonator is suitable for bubble concentrations with air fractions greater than approximately 10 -9 and the pulse propagation sonar for air fractions from 10 -6; the upper limit for both is constrained by attenuation and the validity of the Foldy scattering approximation. Both sensors can be implemented to encompass a wide frequency range with high resolution, corresponding to resonant bubble radii of 10~1200 μm. For air fractions higher than ~5×10-4, bulk measurement using electrical conductivity provides a measure of air fraction. Sufficient overlap in operational air-fraction range exists between in situ acoustical techniques and conductivity measurement to permit comparison and demonstrate consistency in the measurement. Single- and multi-frequency backscatter sonars may be used for low air fractions (<1×10-5) and provide a continuous vertical profile from a deployment beneath the active surface zone, but are subject to masking by dense bubble clouds and are unable to resolve high air fractions close to the surface. This study suggests that the best approach is to use a combination of sensors to probe the bubble field  相似文献   

7.
The effects of refracting sediments on low-frequency sound propagation in range-dependent oceans are studied with parabolic equation models. The predictions of three sediment sound-speed models for low-frequency propagation are compared. Two factors that result in sediment sound-speed gradients are considered. Variation in static pressure due to the variation in the weight of overlying material causes sediment sound speed to increase with depth. The thermodynamic influence of the ocean results in large sound-speed gradients in a boundary layer in the uppermost layer of the sediment. The associated affects of attenuation on propagation are also considered. Both time-domain and frequency-domain results are presented  相似文献   

8.
Comparative study was carried out for an acoustic iterative inverse method to estimate bubble size distributions in water. Conventional bubble sizing methods consider only sound attenuation for sizing. Choi and Yoon [IEEE, 26(1), 125–130 (2001)] reported an acoustic iterative inverse method, which extracts the sound speed component from the measured sound attenuation. It can more accurately estimate the bubble size distributions in water than do the conventional methods. The estimation results of acoustic iterative inverse method were compared with other experimental data. The experimental data show good agreement with the estimation from the acoustic iterative inverse method. This iterative technique can be utilized for bubble sizing in the ocean.  相似文献   

9.
将Argo浮标资料与卫星遥感再分析数据相结合,调用基于抛物方程算法的RAM(Range-dependent Acoustic Model)模型,研究了2012年第14号台风“天秤”对不完整深海声道(3 000 m)和完整深海声道(5 500 m)两种水深条件下声传播特性的影响。结果显示:台风对海水的影响局限于表层水体,具体为混合层加厚,混合层内温度梯度接近于零,声速在混合层内正梯度分布;混合层下方一定深度的水体增温,相应的声速也增大。声源在混合层内时,主要对海表层的声传播产生影响,两种水深条件下均出现表面波导声传播模式以及泄漏模式。声源在混合层以下时,不完整深海声道条件下台风使得会聚区向着声源方向靠近;完整深海声道条件下台风对会聚区的位置影响不明显,但声波的翻转深度增加近500 m。  相似文献   

10.
超短基线定位解算中的距离观测值是指换能器与水下应答器之间的直线距离,而海水声速的不均匀分布导致声波在海水中的实际传播路径为连续弯曲的曲线,需要结合实测声速剖面进行声线修正。根据声速在分层介质中的传播特性,本文提出了一种基于二次多项式拟合的声线跟踪算法,采用线性插值方法对声速剖面数据进行合理加密并按等深度进行分层,设定每层声速梯度是不断变化的,用二次多项式拟合声速,基于运动学原理建立了完整的数学解算模型。仿真结果表明,该方法修正后的水下目标分布具有明显的收敛性,且优于等梯度声线跟踪算法和等效声速剖面法,显著提高了超短基线水声定位系统的定位精度。  相似文献   

11.
The authors report on the development and use of an impedance probe to measure the volume fraction of air (void-fraction) in bubble plumes generated by breaking waves. The void-fraction gauge described was found to be most useful in the initial period after breaking when large void-fractions prevail. The authors describe the instrumentation at length and report on its use in the laboratory and in the field. The instrument is found to be capable of rendering the space-time evolution of the void-fraction field from controlled laboratory breaking waves. Field results show measurements of void-fractions (up to 24%) which are several orders of magnitude greater than time averaged values previously reported. Preliminary measurements show that the fraction of breaking waves per wave is dependent on significant wave height and wind speed. The dependence on wind speed is compared with data of previous investigators. Underwater video photography from the field shows the formation and evolution of distinct bubble plumes and the presence of large bubbles (at least 6-mm radius) generated by breaking  相似文献   

12.
北极冰下声传播特性实验研究   总被引:1,自引:0,他引:1  
通过2017年8月6日在北极海域开展的一次声传播实验,开展了冰下声传播特性实验研究。结合Burke-Twersky (BT)散射模型与射线模型,分析了冰下声传播的多途到达结构,研究了接收声强变化规律,解释了接收声强在30 min内衰减20 dB的现象,分析了接收信号的时间相关性,探讨了接收信号相关性较低的原因。实验结果表明,表面接收信号主要由小角度多次反转反射声线、一次海底反射声线和二次海底反射声线依次构成,表面声道到达信号显著强于海底反射信号。试验冰站在试验期间的运动导致了声传播信号强度和相关性的迅速衰减,并通过仿真得到了验证。  相似文献   

13.
海洋混合层结构对表面声道中声传播特性的影响分析   总被引:1,自引:0,他引:1  
利用WOA05气候态数据集和北黄海调查数据,应用BELLHOP高斯束射线模型分析了我国近海及西太平洋典型海区的混合层结构对表面声道中声传播特性的影响,结果表明:我国近海的混合层结构有显著的区域性和季节性变化;深海中主要表现为混合层深度变化,这种变化直接影响表面声道的空间分布,声波在混合层中的表面声道中传播与在混合层外的影区中传播产生的能量场差异较大;浅海中混合层深度与声速梯度的空间变化都很明显,声速梯度的增大和混合层的加深都能使更多声线以反转的形式传播,使表面声道声场增强。两组海上实验数据表明,在真实海洋中混合层可在短时间内出现生消变化或在局部海域出现非均匀分布。在浅海温跃层环境下,海-气边界特定的物理过程能够使混合层发生间歇性的变化,当表面声道出现时近表层声场明显增强。  相似文献   

14.
High-frequency bubble layer scattering investigations require the measurement of the intensity of backscattered sound and the corresponding depth of the scatterers below the moving surface. Especially at high sea state conditions and high acoustic frequencies, bubbles acoustically mask the surface, i.e., the surface return cannot be detected. However, this environmental condition is the most interesting one in bubble scattering investigations and a reliable method is required to determine the range of the scatterers to the surface displacement. A method for the determination of the vertical profiling of acoustic scattering in the presence of bubbles at high sea state conditions is presented. It is based on the transmission of a low-frequency signal alternately to the high-frequency signal at which the scattering investigations are performed. The only information that is extracted from the low-frequency echo is the onset of the surface return. It is used to compute the true depth of scatterers at the high frequency. Experiments were conducted to determine the optimum low frequency at which the detection of the surface onset in the presence of a high bubble concentration is ensured. A screening ratio is defined to give a measure of the acoustic masking of the sea surface. It is depicted for an extreme wind condition (20 m/s) for the frequency range of 5-25 kHz and as a function of wind speed for 50 kHz measurements. Selected results of subsurface bubble scattering at 50 kHz from experiments under open sea conditions are presented for the wind speed regime from 9 to 22 m/s. Additionally, the two-frequency scatterometer is used to measure sea state characteristics simultaneously to the scattering investigations by remote sensing techniques  相似文献   

15.
An asymptotic-numerical model for low-frequency, bottom-interfacing pulse propagation in the ocean is derived. This model, referred to as the progressive wave equation (PWE), works in the time domain using an approach analogous to the parabolic equation method that is commonly used in the frequency domain. The mode handles depth and range variations in the speed of sound, density, and attenuation. The attenuation is assumed to depend linearly on frequency in the sediment. A numerical solution for the PWE was derived, and the accuracy of the asymptotics, numerics, and starting field was demonstrated with a benchmark  相似文献   

16.
利用2001年3月东海PN断面“973”调查获得的CTD数据,用数值模拟方法研究了PN断面黑潮区域海底起伏对声传播的影响。由深水区向浅水区传播,随着海底的抬升声线的海底反射和海面反射次数增加,声强衰减更快,限制声传播距离。由浅水区向深水区传播,随着海底降低声线上反转点深度增加,传播一定距离后部分声线不能到达上层水体,于是声强衰减也增快。  相似文献   

17.
The acoustic properties of seafloor sediments are of great importance in geoacoustic modeling, detecting, and oceanic engineering. The methods based on the first arrival cycle are investigated to calculate sound speed and attenuation of sediment more precisely in in situ measurements. The comparison of different data analysis methods based on the first arrival cycle approach for in situ measurement results in the following conclusions: (1) the calculated methods can help find the effective cycles and reduce the errors in calculating sound speed and attenuation; (2) using this approach, the point judgment method-based data analysis has the same effectiveness as the cross-correlation method-based data analysis in calculating group sound speed and has the same effectiveness in calculating attenuation in the time domain as the spectrum analysis method-based data analysis has in calculating attenuation in frequency domain; and (3) measurement in water can help not only calibrate the transmitting distance but also can calculate the time delay for the sound speed and the attenuation loss in the transmitting process. Finally, theoretical calculation was used to calculate the measured results, indicating a good agreement, which supports that first arrival cycle-based calculated methods can be used to analyze the measured data and the effective density fluid model can be used to analyze more acoustic properties and invert several physical properties in this experiment.  相似文献   

18.
气泡帷幕在水下噪声抑制方面有非常广泛的应用。为了更好地利用气泡帷幕的衰减特性,在实验室水槽设备中采用气泵法产生气泡帷幕,通过对不同深度、气流量接收信号的时频分析,利用共振谱法对气泡分布进行反演。研究表明:(1)气泡的分布可以利用高斯分布近似描述。(2)随着深度增加,气泡含量也有略微增加。(3)气泵法产生的气泡帷幕的气流量大小对衰减的峰值所在的频段基本没有影响,但气流量的改变会影响声波衰减的强弱,气流量大的情况下,气泡帷幕对声波衰减效果更强。通过掌握气泵法生成气泡帷幕中气泡的分布规律,可以有效指导气泡帷幕的设计。  相似文献   

19.
Mapping wind with high-frequency(HF) radar is still a challenge. The existing second-order spectrum based wind speed extraction method has the problems of short detection distances and low angular resolution for broad-beam HF radar. To solve these problems, we turn to the first-order Bragg spectrum power and propose a space recursion method to map surface wind. One month of radar and buoy data are processed to build a wind spreading function model and a first-order spectrum power model describing the relationship between the maximum of first-order spectrum power and wind speed in different sea states. Based on the theoretical propagation attenuation model, the propagation attenuation is calculated approximately by the wind speed in the previous range cell to compensate for the first-order spectrum in the current range-azimuth cell. By using the compensated first-order spectrum, the final wind speed is extracted in each cell. The first-order spectrum and wind spreading function models are tested using one month of buoy data, which illustrates the applicability of the two models. The final wind vector map demonstrates the potential of the method.  相似文献   

20.
Mud is a complex mixture of water and solid particles and acoustics can help on its control. The mud layer, as an acoustic channel, is characterized by its propagation constant relating the wave frequency, the sound velocity, and the energy absorption. If the input acoustic pulse is known, it is feasible to easily characterize the mud layer as a low pass filter (absorption); if it is also possible to insonify the mud with sound of both low and high frequencies, the sound speed of the mud mixture can be evaluated, and the propagation constant is then known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号