首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Marine Chemistry》2001,73(3-4):319-332
The accumulation of dissolved organic matter (DOM) at the air–sea interface is controlled by dynamic physical processes at the boundary between ocean and atmosphere. Much of the DOM concentrated in the surface microlayer is thought to be protein or glycoprotein. Enzymatic hydrolysis of these and other biopolymers is an important step in the microbial uptake of dissolved and particulate organic matter in many aquatic environments. We employed a sensitive fluorescence technique to investigate differences between extracellular enzymatic peptide hydrolysis in the sea surface microlayer and corresponding subsurface water from Stony Brook Harbor, NY. We separated the microlayer from its underlying water and thus measured hydrolysis potential rather than an in-situ process. Peptide turnover was always faster in the microlayer than in subsurface waters. This was confirmed by allowing a new surface film to form on subsurface water; hydrolysis was still faster in the new surface film. In a year-long study, we found the relative difference between turnover times in the surface film and subsurface waters to vary greatly with season. While rate constants of peptide hydrolysis were generally higher in both microlayer and bulk water samples in spring/summer than in fall/winter, the difference in activity between the two environments was greatest in winter. Enhanced hydrolysis in the sea surface microlayer is likely due to the greater concentrations of DOM in the microlayer. Seasonal changes in distribution of hydrolytic activity between surface film and subsurface water probably reflect seasonal variation in the mechanisms of DOM enrichment, which depend on water temperature, substance and energy fluxes across the water–air boundary, activity of aquatic organisms and other seasonal variables.  相似文献   

2.
Recent studies increasingly point to the interface between the world's atmosphere and hydrosphere (the sea-surface microlayer) as an important biological habitat and a collection point for anthropogenic materials. Newly developed sampling techniques collect different qualitative and quantitative fractions of the upper sea surface from depths of less than one micron to several centimeters.The microlayer provides a habitat for a biota, including the larvae of many commercial fishery species, which are often highly enriched in density compared to subsurface water only a few cm below. Common enrichments for bacterioneuston, phytoneuston, and zooneuston are 102−104, 1−102, and 1−10, respectively. The trophic relationships or integrated functioning of these neustonic communities have not been examined.Surface tension forces provide a physically stable microlayer, but one which is subjected to greater environmental and climatic variation than the water column. A number of poorly understood physical processes control the movement and flux of materials within and through the microlayer. The microlayer is generally coated with a natural organic film of lipid and fatty acid material overlying a polysaccharide protein complex.The microlayer serves as both a source and a sink for materials in the atmosphere and the water column. Among these materials are large quantities of anthropogenic substances which frequently occur at concentrations 102−104 greater than these in the water column. These include plastics, tar lumps, polyaromatic hydrocarbons, chlorrinated hydrocarbons, and potentially toxic metals, such as, lead, copper, zinc, and nickel. How the unique processes occurring in the microlayer affect the fate of anthropogenic substances is not yet clear. Many important questions remain to be examined.  相似文献   

3.
No. 2 fuel oil hydrocarbons put into the bulk water columns of controlled estuarine ecosystems were found to accumulate in the surface microlayer at the air-water interface. The alkane hydrocarbons were disproportionately enriched in the microlayer compared with the aromatic hydrocarbons. A comparison of hydrocarbon boiling point distributions between bulk water, microlayer and air samples indicated that the oil hydrocarbons underwent extensive weathering by evaporation upon reaching the air-water interface. No evidence was found of increased biodegradation in the microlayer compared with that in the underlying water. A fraction of the high molecular weight alkanes, the least water soluble and least volatile constituents of the oil, appeared to be coated out from the microlayer onto the inner walls of the ecosystems.  相似文献   

4.
《Marine Chemistry》1987,21(1):75-89
The distribution of hydrocarbons in the water column seems to be affected by inputs from both interfaces of accumulation: the surface microlayer and the water/sediment interface. Volatilization and accommodation appear to be the major factors controlling the fate of hydrocarbons, especially in the dissolved phase, whereas some classes of particles are confirmed as important supports for the transport of such pollutants. In this respect, the 20–200 μm planktonic fraction is less contaminated than the total suspended matter.This study gives evidence for intense bacterial degradation affecting the hydrocarbons in the whole water column. In spite of the chronic petroleum pollution, we have also observed the predominance of n-alkanes in the [n-C16; n-C18] and [n-C27, n-C29] boiling ranges, which could be used as biological markers in these highly polluted waters.  相似文献   

5.
Concentrations of particulate Fe, Mn, Ni, Cu, Zn, Cd and Pb have been measured in surface microlayer and subsurface seawater samples collected in the North Sea adjacent to the East Anglian coast, in an area subject to a considerable fluvial input of clay minerals. The results are interpreted by estimating the magnitudes of different processes affecting particulate matter in the microlayer: atmospheric deposition, Brownian diffusion, gravitational settling, bubble flotation and mixing. Both Fe and Mn are strongly depleted in the microlayer, evidently as a result of gravitational settling of Fe- and Mn-bearing mineral particles out of the microlayer. These particles are mixed into the surface region from the water column beneath. Microlayer enrichment of Cu, Zn and Pb was also observed and probably results from flotation of particles attached to rising bubbles. In one set of samples, however, the marked enrichment of these elements, as well as Ni, may result instead from deposition of particles from the atmosphere directly onto the water surface.  相似文献   

6.
Sediments and mussels (Mytilus edulis, Mytilus galloprovincialis) were sampled in different European coastal environments (Germany, France, Spain) and analysed for their polycyclic aromatic hydrocarbon (PAH) content by Gas Chromatography/Mass Spectrometry (GC-MS). Bioaccumulation factors of individual compounds from the sediment were calculated and discussed according to the compound solubility. The mussels showed different accumulation patterns according to the pollution source they were exposed to (dissolved fraction of PAHs, particulate fraction, petroleum present in the water column). The exposure source also depends on the geographical location of the mussels. In the Mediterranean Sea, the bivalves were mainly exposed to the dissolved fraction of PAHs, while in the Baltic Sea and in the Atlantic Ocean, the PAHs associated to the particles were significant sources.  相似文献   

7.
Sixteen surface microlayer samples and corresponding subsurface water samples were collected in the western North Atlantic during April–May 2003 to study the distribution and cycling of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) and the factors influencing them. In the surface microlayer, high concentrations of DMS appeared mostly in the samples containing high levels of chlorophyll a, and a significant correlation was found between DMS and chlorophyll a concentrations. In addition, microlayer DMS concentrations were correlated with microlayer DMSPd (dissolved) concentrations. DMSPd was found to be enriched in the microlayer with an average enrichment factor (EF) of 5.19. However, no microlayer enrichment of DMS was found for most samples collected. Interestingly, the DMS production rates in the microlayer were much higher than those in the subsurface water. Enhanced DMS production in the microlayer was likely due to the higher concentrations of DMSPd in the microlayer. A consistent pattern was observed in this study in which the concentrations of DMS, DMSPd, DMSPp (particulate) and chlorophyll a in the microlayer were closely related to their corresponding subsurface water concentrations, suggesting that these constituents in the microlayer were directly dependent on the transport from the bulk liquid below. Enhanced DMS production in the microlayer further reinforces the conclusion that the surface microlayer has greater biological activity relative to the underlying water.  相似文献   

8.
9.
In view of the demonstrated concentration of hydrophobic pollutants at the air/water interface and their expected deleterious effects on the associated neuston, surface microlayer sampling with a Teflon disc was introduced as part of a coastal oil pollution survey. Differentiation of the petroleum assemblages comprising the samples is demonstrated, using gas chromatography with flame-ionization detection and GC/MS with computer-reconstructed mass fragmentograms. The former technique provides parameters such as the carbon-number preference index, which distinguishes biogenic from petrogenic n-alkanes, whilst the relative abundances of ions characteristic of steranes and triterpanes indicate similarities among samples, and give further evidence of the petrogenic origin of the hydrocarbon assemblages found. Levels of petroleum hydrocarbons found are uniformly higher (expressed as μg/m2) than those reported previously, where sampling techniques differed from the present one in taking a finite volume of surface water for analysis.  相似文献   

10.
Twenty-eight sea surface microlayer samples, along with subsurface bulk water samples were collected in Funka Bay, Japan during October 2000–March 2001 and analyzed for dimethylsulfoniopropionate, dissolved (DMSPd) and particulate (DMSPp), and chlorophyll a. The aim of the study was to examine the extent of enrichment of DMSP in the microlayer and its relationship to chlorophyll a, as well as the production rate of dimethylsulfide (DMS) from DMSP and the factors that influence this. The enrichment factor (EF) of DMSPd in the surface microlayer ranged from 0.81 to 4.6 with a mean of 1.85. In contrast, EF of DMSPp in the microlayer varied widely from 0.85–10.5 with an average of 3.21. Chlorophyll a also appeared to be enriched in the microlayer relative to the subsurface water. This may be seen as an important cause of the observed enrichment of DMSP in the microlayer. The concentrations of DMSPp in the surface microlayer showed a strong temporal variation, basically following the change in chlorophyll a levels. Moreover, the microlayer concentrations of DMSPp were, on average, 3-fold higher than the microlayer concentrations of DMSPd and there was a significant correlation between them. Additionally, there was a great variability in the ratios of DMSPp to chlorophyll a over the study period, reflecting seasonal variation in the proportion of DMSP producers in the total phytoplankton assemblage. It is interesting that the production rate of DMS was enhanced in the microlayer and this rate was closely correlated with the microlayer DMSPd concentration. Microlayer enrichment of chlorophyll a and higher DMS production rate in the microlayer provide favorable evidence supporting the view that the sea surface microlayer has a greater biological activity than the underlying water.  相似文献   

11.
对南沙海区部分站位微表层和次表层的pH、碱度、密度和表面张力进行了测定。结果表明:微表层的表面张力低于次表层的表面张力,并且表面张力与溶解有机碳(DOC)相关;微表层的pH低于次表层的pH,并探讨了其原因;微表层的碱度和密度一般高于次表层,同时对其原因进行了探讨。  相似文献   

12.
Over 50 seawater samples from two different sites—Barcelona (Spain) and Banyuls-sur-Mer (France)—were analyzed in order to study the extent and postulate the processes driving the enrichment of hydrophobic organic pollutants in the sea surface microlayer (SML). A number of individual polychlorinated biphenyl (PCB) congeners (41) were measured to study their partitioning between the particulate (fraction > 0.7 μm) and the dissolved + colloidal phases (fraction < 0.7 μm), with the latter being differentiated into estimated dissolved and colloidal phases. In addition, several organochlorine pesticides were also measured, namely, HCB, α-HCH, γ-HCH, 4,4′-DDE, 4,4′-DDD and 4,4′-DDT. The presence of PCB congener profiles found in the SML suggests a dynamic coupling with the atmosphere in Banyuls sampling site, whereas offshore Barcelona the presence of highly chlorinated congeners was due to persistent sediment resuspension. The average PCB concentration in the SML dissolved + colloidal phase were higher in Banyuls (7.8 ng L 1) than in Barcelona (3.6 ng L 1) samples, but in the particulate phase concentrations were higher in Barcelona (3.2 ng L 1) to that of Banyuls (1.4 ng L 1). However, PCB concentrations in the SML generally also showed large variability. Enrichment factors of PCBs and other organochlorine compounds in the SML with respect to the underlying water column ranged from 0.2 to 7.4. This may be explained for both the dissolved + colloidal and particulate phases by the enrichment in the SML of organic carbon (OC) as discerned from particle–water and colloid–water partitioning.  相似文献   

13.
利用高精度的电感耦合等离子体质谱仪对2014年1月长江口表层水中溶解铀浓度及其234U/238U比值、2013年3月长江口表层沉积物中各矿物组分的铀含量及其234U/238U比值进行了测定,研究了其空间分布特征和影响因素。结果表明:除了长江径流和海水之外,长江口还有其他的溶解铀来源。水体中过剩铀与悬浮颗粒物浓度呈现显著相关性(r2=0.96)。对长江口表层沉积物进行的序列提取实验进一步表明,水体中悬浮颗粒物或沉积物中可解吸态和碳酸钙结合态铀可以在河口区域释放进入水体,而铁锰氧化物和有机物结合铀比较稳定,不受河口区混合过程的影响。每千克颗粒物或沉积物能够释放约2 μmol颗粒态铀,使其转化为溶解态。然而,铁氢氧化物和细颗粒物的絮凝吸附作用也可使溶解铀同时从河口水体中清除。在低盐度区,铀的清除和添加过程速率相近,使溶解铀呈现暂时的"伪保守"现象:颗粒态释放的铀具有明显低的234U/238U比值,导致水体的234U/238U低于保守混合值。在中高盐度区域,溶解铀呈现明显的富集现象。但是由于水相和颗粒相中的铀交换,可释放颗粒态铀的234U/238U接近溶解铀的234U/238U比值,从而导致水体的234U/238U比值呈现出保守性。长江口颗粒物的铀释放通量为(3.48±0.41)×105 mol/a,约占输入的总颗粒态铀通量(1.80±0.17)×106 mol/a的19.3%。长江口输入东海的溶解铀总通量(河流溶解态铀与河口添加铀之和)为(2.68±0.13)×106 mol/a,约为世界河流入海铀通量的11.7%。  相似文献   

14.
The distribution and chemical properties of chromophoric dissolved organic matter (CDOM) in the Jiaozhou Bay, China were examined during four cruises in 2010-2011. The influence of freshwater and industrial and municipal sewage along the eastern coast of the bay was clearly evident as CDOM levels (defined as a 305 ), and dissolved organic carbon (DOC) concentrations were well correlated with salinity during all the cruises. Moreover, DOC concentrations were significantly correlated with chlorophyll a concentrations in the surface microlayer as well as in the subsurface water. The concentrations of DOC and CDOM displayed a gradually decreasing trend from the northwestern and eastern coast to the central bay, and the values and gradients of their concentrations on the eastern coast were generally higher than those on the western coast. In addition, CDOM and DOC levels were generally higher in the surface microlayer than in the subsurface water. In comparison with DOC, CDOM exhibited a greater extent of enrichment in the microlayer in each cruise, with average enrichment factor (E F ) values of 1.38 and 1.84, respectively. Four fluorescent components were identified from the surface microlayer and subsurface water samples and could be distinguished as peak A, peak T, peak B and peak M. For all the cruises, peak A levels were higher in the surface microlayer than in the subsurface water. This pattern of variation might be attributed to the terrestrial input.  相似文献   

15.
In September 1994 and 1995, scientists from the Australian Institute of Marine Science (AIMS) and the Australian Geological Survey Organization (AGSO) conducted surveys aboard the RV Lady Basten to determine the dispersion, fates and effects of produced formation water (PFW) discharged from the ‘ Harriet A ’ oil production platform near the Montebello Islands. This report is one of four related papers and describes the non-volatile hydrocarbon chemistry studies. The dispersion of the PFW into dissolved and particulate fractions of seawater were measured using moored high volume water samplers, surface screen samplers and moored and drifting sediment traps. Bio-accumulation was studied using transplanted oysters, and dispersion measured into sediment with benthic grabs.Results showed enrichment in non-volatile hydrocarbons in surface microlayer samples to a distance of 1·8 km in the direction of tidal flow. Concentrations in surface microlayers near the platform varied by an order of magnitude and corresponded to when a surface slick was visible or not visible. Concentrations of oil in seawater ranged from 2·0 to 8·5 μg l−1at near stations to 1·3 μg l−1at 1·8 km. Water column samples showed the processes of desorption from particles for soluble components occur within the range of 1·8 km. Most particulate hydrocarbons drop out of suspension within c. 1 to 2 km from the platform. Fluxes of particulate hydrocarbons through the water column at c. 1 km, as estimated by moored sediment traps in 1995, were 138 to 148 ng cm−2day−1. A decrease in sediment concentrations within c. 1 km of the platform was measured as 2·45±1·29 μg g−1dry wt (n=15) in 1994 to 0·86±0·54 μg g−1dry wt (n=21) in 1995, after the platform installed a centrifugal separator in the discharge treatment process. Thus the residence time of this relatively low molecular weight oil was estimated in the coarse aerobic sands surrounding the platform to be less than one year. Oysters suspended near the platform bio-accumulated hydrocarbons and other lipophilic organics in their tissues. Uptake rates and bio-concentration factors of hydrocarbons indicated potential toxicity at the near-field stations within c. 1 km radius.A mass balance was constructed to show the partitioning of the input of hydrocarbons from the PFW into the surrounding marine ecosystem. The rates of dissipation processes were estimated as follows: dilution from tidal currents>degradation in the water column>sedimentation>evaporation. The calculations based on maximum concentrations measured in the environmental samples accounted for 85% of the daily input suspended within a 1 km radius.It is estimated that the potential zone of toxic influence in the water column extends to a distance of approximately 1 km. Concentrations of oil in sediments were too low to indicate potential toxicity. By the collaborative application of oceanographic and geochemical techniques to marine environmental problems, we endeavour to provide effective feedback to the oil industry to gauge the effectiveness of their operational strategies in minimizing impact in these pristine regions.  相似文献   

16.
《Marine Chemistry》2001,76(3):137-153
Laboratory experiments, along with in situ investigation in Funka Bay, Japan, were conducted to determine the enrichment factor (EF) of dimethylsulfide (DMS) in the sea surface microlayer, as well as its the production and consumption rates. The EF of DMS in the microlayer was largely affected by various factors including sampling methods, sampling thickness, temperature, salinity, and DMS concentration in bulk water. In all cases but the sealed system, a part of DMS in the microlayer was always unavoidably lost during sampling. High temperature, great wind speed, and slow sampling would increase the extent of loss of DMS due to volatilization. In the field, the screen-collected samples usually exhibited greater microlayer enrichment for DMS than the plate-collected samples, showing that the screen sampler might be more effective for collecting the in situ microlayer DMS. The production and consumption rates of DMS in the surface microlayer were higher than those in the bulk water and these two rates were significantly correlated with the microlayer DMS concentrations. Moreover, the EF of DMS appeared to be related to the microlayer production rate of DMS, providing evidence supporting the observed DMS enrichment in the microlayer. The DMS production and consumption rates were not directly related to its concentrations in the bulk water, suggesting that the processes of production and consumption of DMS were very complex. In the surface microlayer, the biological turnover time of DMS varied from 0.4 to 1.9 days, with an average of 0.9 days, which was about 540-fold greater than the mean DMS sea–air turnover time (2.4 min). Thus, the biological process occurring within the microlayer can be neglected when we consider the sea–air exchange of DMS. Considering the microlayer production rate of DMS (an average of 9.7 nM day−1) to be too small to counteract the sea-to-air removal of DMS, the main source of DMS in the microlayer appears to be through vertical transport by turbulent diffusion from the underlying water.  相似文献   

17.
Hydrocarbon analyses on samples of sediment, interstitial water, and dissolved and particulate fractions of the water column from the vicinity of the Isla Vista seep near Santa Barbara, California, are presented. The results demonstrate that a very heterogeneous distribution of hydrocarbon composition and concentration exists in the seep environment and that the life-style and feeding habits of the organisms in this environment will have a dramatic effect on their hydrocarbon exposure.  相似文献   

18.
Over 30 sea surface microlayer (SML) samples from two contrasting sites in the North Western Mediterranean -- Barcelona (Spain) and Banyuls-sur-Mer (France) -- were collected using three different sampling devices, namely, glass plate, metal screen (MS) and a surface slick sampler (SS), and compared with the corresponding underlying water (16 samples). The distributions of 41 polychlorinated biphenyl congeners (PCBs) were determined in the different phases: particulate (1.17-10.8 SigmaPCB ng L(-1)), truly dissolved (0.080-16.7 SigmaPCB ng L(-1)) and colloidal matter (1.17-43.0 SigmaPCB ng L(-1)), being the last two estimated from the analysis of the apparently dissolved phase. Concentrations of PCBs in the SML were higher than those in the underlying water (ULW), giving rise to enrichment factors (EF=[C](SML)/[C](ULW)) up to first-order of magnitude. The ANOVA statistical approach was used to assess differences of bulk data (e.g. dissolved organic carbon, DOC; particulate organic carbon, POC; suspended particulate matter, SPM) among sampling devices, whilst p-tailed t paired tests were used in order to compare the enrichments obtained for each sampling date. In this respect, no significantly different enrichment factors were found among sampling devices (p < 0.05), although the surface SS showed lower enrichments, probably due to the dilution of the SML with the ULW during sampling. The MS seemed to be the most suitable device for the determination of PCBs in the SML in terms of sampling efficiency under a variety of meteorological conditions.  相似文献   

19.
Marine fish eggs, from herring (Clupea harengus) and turbot (Psetta maxima), were used to test the effects of the sea-surface microlayer on embryonic development. The eggs were exposed in static systems to full strength microlayer and 1,10,50% dilutions. Depending on the sampling site (Helgoland harbour, Kiel Förde, Travemünde marina, Elbe Hamburg Port) and time, microlayer contained varying amounts of Zn, Cd, Cu, Ni, Fe, Pb and Co, in concentrations 100 times above those found in subsurface bulk water. Chlorinated hydrocarbon pesticides were not found at concentrations elevated above bulk water, but considerable amounts of petroleum hydrocarbons and phthalate esters were detected. Microlayer displayed differential concentration-dependent toxicity for each species used in the experiments. Effects on hatching time as well as total hatch (%) and number of abnormal larvae were recorded. Herring eggs were most affected by Helgoland microlayer (suspected effect of high metal content) while turbot eggs were most sensitive to Travemünde and Elbe microlayer (suspected effect of high petroleum hydrocarbons). The usefulness of microlayer studies as a tool for environmental assessment is discussed. An impact of microlayer effects on recruitment in sensitive species is deemed possible.  相似文献   

20.
Microlayer samples from a coastal marine area near Marseilles (France) collected in 1979 and 1980 have been analysed for POC, PON, chlorophyll a, ATP, cell counts, carbon fixation and in some cases for heterotrophic activity. Comparison of microlayer data with those of underlying water showed in most cases enrichment of organic matter and microorganisms in the surface microlayer. Carbon fixation values were comparable to those observed at 0·50 m except in the slicks, where phytoneustonic activity was higher than that of the underlying phytoplankton. Though total heterotrophic activity was higher in the surface film, the turnover time was not significantly different in both microlayer and underlying water. Our data show that enrichment is highly dependent on sea conditions; whenever slicks are present, the surface film seems to function like an eutrophic system, including active living material, although detritus is regularly present in large amounts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号