首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The origin of Mercury's anomalous core and low FeO surface mineralogy are outstanding questions in planetary science. Mercury's composition may result from cosmochemical controls on the precursor solids that accreted to form Mercury. High temperatures and enrichment in solid condensates are likely conditions near the midplane of the inner solar protoplanetary disk. Silicate liquids similar to the liquids quenched in ferromagnesian chondrules are thermodynamically stable in oxygen-rich systems that are highly enriched in dust of CI-chondrite composition. In contrast, the solids surviving into the orbit of Mercury's accretion zone were probably similar to highly unequilibrated, anhydrous, interstellar organic- and presolar grain-bearing chondritic, porous interplanetary dust particles (C-IDPs). Chemical systems enriched in an assumed C-IDP composition dust produce condensates (solid+liquid assemblages in equilibrium with vapor) with super-chondritic atomic Fe/Si ratios at high temperatures, approaching 50% of that estimated for bulk Mercury. Sulfur behaves as a refractory element, but at lower temperatures, in these chemical systems. Stable minerals are FeO-poor, and include CaS and MgS, species found in enstatite chondrites. Disk gradients in volatile compositions of planetary and asteroidal precursors can explain Mercury's anomalous composition, as well as enstatite chondrite and aubrite parent body compositions. This model predicts high sulfur content, and very low FeO content of Mercury's surface rocks.  相似文献   

2.
We present petrologic and isotopic data on Northwest Africa (NWA) 4799, NWA 7809, NWA 7214, and NWA 11071 meteorites, which were previously classified as aubrites. These four meteorites contain between 31 and 56 vol% of equigranular, nearly endmember enstatite, Fe,Ni metal, plagioclase, terrestrial alteration products, and sulfides, such as troilite, niningerite, daubréelite, oldhamite, and caswellsilverite. The equigranular texture of the enstatite and the presence of the metal surrounding enstatite indicate that these rocks were not formed through igneous processes like the aubrites, but rather by impact processes. In addition, the presence of pre‐terrestrially weathered metal (7.1–14 vol%), undifferentiated modal abundances compared to enstatite chondrites, presence of graphite, absence of diopside and forsterite, low Ti in troilite, and high Si in Fe,Ni metals suggest that these rocks formed through impact melting on chondritic and not aubritic parent bodies. Formation of these meteorites on a parent body with similar properties to the EHa enstatite chondrite parent body is suggested by their mineralogy. These parent bodies have undergone impact events from at least 4.5 Ga (NWA 11071) until at least 4.2 Ga (NWA 4799) according to 39Ar‐40Ar ages, indicating that this region of the solar system was heavily bombarded early in its history. By comparing NWA enstatite chondrite impact melts to Mercury, we infer that they represent imperfect petrological analogs to this planet given their high metal abundances, but they could represent important geochemical analogs for the behavior and geochemical affinities of elements on Mercury. Furthermore, the enstatite chondrite impact melts represent an important petrological analog for understanding high‐temperature processes and impact processes on Mercury, due to their similar mineralogies, Fe‐metal‐rich and FeO‐poor silicate abundances, and low oxygen fugacity.  相似文献   

3.
The high average density and low surface FeO content of the planet Mercury are shown to be consistent with very low oxygen fugacity during core segregation, in the range 3-6 log units below the iron-wüstite buffer. These low oxygen fugacities, and associated high metal content, are characteristic of high-iron enstatite (EH) and Bencubbinite (CB) chondrites, raising the possibility that such materials may have been important building blocks for this planet. With this idea in mind we have explored the internal structure of a Mercury sized planet of EH or CB bulk composition. Phase equilibria in the silicate mantle have been modeled using the thermodynamic calculator p-MELTS, and these simulations suggest that orthopyroxene will be the dominant mantle phase for both EH and CB compositions, with crystalline SiO2 being an important minor phase at all pressures. Simulations for both compositions predict a plagioclase-bearing “crust” at low pressure, significant clinopyroxene also being calculated for the CB bulk composition. Concerning the core, comparison with recent high pressure and high temperature experiments relevant to the formation of enstatite meteorites, suggest that the core of Mercury may contain several wt.% silicon, in addition to sulfur. In light of the pressure of the core-mantle boundary on Mercury (∼7 GPa) and the pressure at which the immiscibility gap in the system Fe-S-Si closes (∼15 GPa) we suggest that Mercury’s core may have a complex shell structure comprising: (i) an outer layer of Fe-S liquid, poor in Si; (ii) a middle layer of Fe-Si liquid, poor in S; and (iii) an inner core of solid metal. The distribution of heat-producing elements between mantle and core, and within a layered core have been quantified. Available data for Th and K suggest that these elements will not enter the core in significant amounts. On the other hand, for the case of U both recently published metal/silicate partitioning data, as well as observations of U distribution in enstatite chondrites, suggest that this element behaves as a chalcophile element at low oxygen fugacity. Using these new data we predict that U will be concentrated in the outer layer of the mercurian core. Heat from the decay of U could thus act to maintain this part of Mercury’s core molten, potentially contributing to the origin of Mercury’s magnetic field. This result contrasts with the Earth where the radioactive decay of U represents a negligible contribution to core heating.  相似文献   

4.
Abstract— Plans are underway for spacecraft missions to the planet Mercury beginning in the latter part of this decade (NASA's MESSENGER (MErcury, Surface, Space ENvironment, GEochemistry, Ranging) and ESA's BepiColombo). Mercury is an airless body whose surface is apparently very low in ferrous iron. Much of the mercurian surface material is expected to be optically mature, a state produced by the “space weathering” process from direct exposure to the space environment. If appropriate analog terrains can be identified on the Moon, then study of their reflectance spectra and composition will improve our understanding of space weathering of low‐Fe surfaces and aid in the interpretation of data returned from Mercury by the spacecraft. We have conducted a search for areas of the lunar surface that are optically mature and have very low ferrous iron content using Clementine ultraviolet‐visible (UV‐vis) image products. Several regions with these properties have been identified on the farside. These areas, representing mature pure anorthosites (>90% plagioclase feldspar), are of interest because only relatively immature pure anorthosites have previously been studied with Earth‐based spectrometry. A comparison of Mercury with the lunar analogs reveals similarities in spectral characteristics, and there are hints that the mercurian surface may be even lower in FeO content than the lunar pure anorthosites. We also investigate the potential for use of spectral features other than the commonly studied “1 μm” mafic mineral absorption band as tools for compositional assessment when spacecraft spectral measurements of Mercury become available. Most low‐Fe minerals plausibly present on Mercury lack absorption bands, but plagioclase possesses an iron impurity absorption at 1.25 μm. Detection of this diagnostic band may be possible in fresh crater deposits.  相似文献   

5.
J. Warell  D.T. Blewett 《Icarus》2004,168(2):257-276
We present new optical (0.4-0.65 μm) spectra of Mercury and lunar pure anorthosite locations, obtained quasi-simultaneously with the Nordic Optical Telescope (NOT) in 2002. A comparative study is performed with the model of Lucey et al. (2000, J. Geophys. Res. 105, 20297-20305, and references therein) between iron-poor, mature, pure anorthosite (>90% plagioclase feldspar) Clementine spectra from the lunar farside and a combined 0.4-1.0 μm mercurian spectrum, obtained with the NOT, calculated for standard photometric geometry. Mercury is located at more extreme locations in the Lucey ratio-reflectance diagrams than any known lunar soil, specifically with respect to the extremely iron-poor mature anorthosites. Though quantitative prediction of FeO and TiO2 abundances cannot be made without a more generally applicable model, we find qualitatively that the abundances of both these oxides must be near zero for Mercury. We utilize the theory of Hapke (2002, Icarus 157, 523-534, and references therein), with realistic photometric parameters, to model laboratory spectra of matured mineral powders and lunar soils, and remotely sensed spectra of lunar anorthosites and Mercury. An important difference between fabricated and natural powders is the high value for the internal scattering parameter necessary to interpret the spectra for the former, and the requirement of rough and non-isotropically scattering surfaces in the modelling of the latter. The mature lunar anorthosite spectra were well modelled with binary mixtures of calcic feldspars and olivines, grain sizes of 25-30 μm and a concentration of submicroscopic metallic iron (SMFe) of 0.12-0.15% in grain coatings. The mercurian spectrum is not possible to interpret from terrestrial mineral powder spectra without introducing an average particle scattering function for the bulk soil that increases in backscattering efficiency with wavelength. The observed spectrum is somewhat better predicted with binary mixture models of feldspars and pyroxenes, than with single-component regoliths consisting of either albite or diopside. Correct spectral reflectance values were predicted with a concentration of 0.1 wt% SMFe in coatings of 15-30 μm sized grains. Since reasonable cosmogonical formation scenarios for Mercury, or meteoritic infall, predict iron concentrations at least this high, we draw the conclusion that the average grain size of Mercury is about a factor of two smaller than for average returned lunar soil samples. The 0.6-2.5 μm spectrum of McCord and Clark (1979, J. Geophys. Res. 178, 745-747) is used to further limit the possible range of mineralogical composition of Mercury. It is found that an intimately mixed and matured 3:1 labradorite-to-enstatite regolith composition best matches both the optical and near-infrared spectra, yielding an abundance of ∼1.2 wt% FeO and ∼0 wt% TiO2.  相似文献   

6.
Two new missions to Mercury are planned in the next few years (according to the NASA Messenger project in 2004 and the ESA BepiColomboproject in 2009). Many aspects of the study of Mercury concerning the origin of the planet, its interior structure, the formation and composition of the regolith, the surface cratering processes, the magnetosphere, the very tenuous atmosphere (exosphere) of Mercury, the orbital and rotational dynamics, and the thermal history of the planet's surface and interior are intensely developing at present. The presence of rocks on Mercury's surface, such as anorthosites (consisting mainly of calcium plagioclase) and feldspars, was reliably established in the course of such investigations. There are obvious signatures of old lava outflows and the heterogeneous composition of the crust depleted in FeO (less than 3%) and enriched with feldspar, with the possible presence of low-iron pyroxenes and alkali basalts. The sole spectral feature in the near infrared, observed at some longitudes, is a possible pyroxene absorption band at 0.95 m, which can be used to investigate the abundance and distribution of FeO in the regolith. Mercury represents a geologically intriguing planetary object. Its exosphere contains Na and K, the origin of which is undoubtedly related to the nature of Mercury's surface. The physical properties of Mercury's regolith, its structure, the grain sizes, the refractive index, and even the characteristic sizes of block material, lend themselves, in principle, to investigation by remote sensing methods. It is possible that deposits of buried water ice and/or elemental sulfur are present in the polar regions of the planet. The results of the study of the structure, physical properties, and composition of Mercury's regolith can be used to single out fundamental features in the origin of Mercury's surface. Thermal infrared spectra are also indicative of the presence of feldspars, pyroxenes, and igneous nepheline-bearing alkali syenites. The wavelengths of the thermal emissivity maxima indicate intermediate or slightly mafic rocks with a pronounced heterogeneous composition. The iron absorption bands give evidence for the presence of FeO in the Hermean crust and mantle. To some extent, the physical properties of the crustal layers may be associated with the odd magnetic field of the planet. The resulting Hermean magnetic field may be produced, at least partly, by randomly oriented paleomagnetic fields of individual large magnetized blocks of the planet's crust.  相似文献   

7.
The spectral reflectance (0.32–1.06 μm) of Mercury was measured during two elongations, September–October 1974 and March 1975. The spectra are much improved over the previously available measurements. The reflectance increases almost linearly with wavelength and no electronic transition absorption bands are evident to the precision of the data. The new spectra agree very well with the reflectance of mature lunar mare and upland soils and are dissimilar to those of any other observed solar system object. This suggests that the surface materials and the weathering processes controlling their optical properties are similar for both the Moon and Mercury. Differences between the spectra for the two observation periods may indicate differences in the average composition for the different regions of Mercury observed.  相似文献   

8.
Abstract— We present new compositional data for 30 lunar stones representing about 19 meteorites. Most have iron concentrations intermediate to those of the numerous feldspathic lunar meteorites (3–7% FeO) and the basaltic lunar meteorites (17–23% FeO). All but one are polymict breccias. Some, as implied by their intermediate composition, are mainly mixtures of brecciated anorthosite and mare basalt, with low concentrations of incompatible elements such as Sm (1–3 μg/g). These breccias likely originate from points on the Moon where mare basalt has mixed with material of the FHT (Feldspathic Highlands Terrane). Others, however, are not anorthosite‐basalt mixtures. Three (17–75 μ/g Sm) consist mainly of nonmare mafic material from the nearside PKT (Procellarum KREEP Terrane) and a few are ternary mixtures of material from the FHT, PKT, and maria. Some contain mafic, nonmare lithologies like anorthositic norites, norites, gabbronorites, and troctolite. These breccias are largely unlike breccias of the Apollo collection in that they are poor in Sm as well as highly feldspathic anorthosite such as that common at the Apollo 16 site. Several have high Th/Sm compared to Apollo breccias. Dhofar 961, which is olivine gabbronoritic and moderately rich in Sm, has lower Eu/Sm than Apollo samples of similar Sm concentration. This difference indicates that the carrier of rare earth elements is not KREEP, as known from the Apollo missions. On the basis of our present knowledge from remote sensing, among lunar meteorites Dhofar 961 is the one most likely to have originated from South Pole‐Aitken basin on the lunar far side.  相似文献   

9.
Abstract— We report noble gas, oxygen isotope, 14C and 10Be data of Itqiy as well as noble gas, 14C and 10Be results for Zak?odzie. Both samples have been recently classified as anomalous enstatite meteorites and have been compared in terms of their mineralogy and chemical composition. The composition of enstatite and kamacite and the occurrence of specific sulfide phases in Itqiy indicate it formed under similar reducing conditions to those postulated for enstatite chondrites. The new results now seem to point at a direct spatial link. The noble gas record of Itqiy exhibits the presence of a trapped subsolar component, which is diagnostic for petrologic types 4–6 among enstatite chondrites. The concentration of radiogenic 4He is very low in Itqiy and indicates a recent thermal event. Its 21Ne cosmic‐ray exposure age is 30.1 ± 3.0 Ma and matches the most common age range of enstatite chondrites (mostly EL6 chondrites) but not that of Zak?odzie. Itqiy's isotopic composition of oxygen is in good agreement with that observed in Zak?odzie as well as those found in enstatite meteorites suggesting an origin from a common oxygen pool. The noble gas results, on the other hand, give reason to believe that the origin and evolution of Itqiy and Zak?odzie are not directly connected. Itqiy's terrestrial age of 5800 ± 500 years sheds crucial light on the uncertain circumstances of its recovery and proves that Itqiy is not a modern fall, whereas the 14C results from Zak?odzie suggest it hit Earth only recently.  相似文献   

10.
The concentrations of major and trace elements have been determined in igneous rocks from Apollo 15. All materials analyzed have typical depletions of Eu except for minerals separated from sample 15085. Four samples have concentrations of trace elements that are similar to those of KREEP. The samples of mare basalt from Apollo 15 have higher concentrations of FeO, MgO, Mn, and Cr and lower concentrations of CaO, Na2O, K2O, and rare-earth elements (REE) as compared to the samples of mare basalt from Apollos 11, 12, and 14. The samples can be divided into two groups on the basis of their normative compositions. One group is quartz normative and has low concentrations of FeO while the other is olivine normative and has high concentrations of FeO. The trace element data indicate that the samples of olivine normative basalt could be from different portions of a single lava flow. At least two and possible three parent magmas can be identified from the samples of the quartz normative group on the basis of their concentration ratios of Sm to Eu. Within each group, the compositions of the samples appear to be related by crystallization of olivine or pyroxene. Significant variations of the ratio of concentration of Sm to Eu cannot be produced without plagioclase-liquid equilibrium. The source material of mare basalt may be depleted in Eu. Alternatively, the magmas may have assimilated a small volume of material similar to KREEP.Paper dedicated to Prof. Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

11.
J. Warell 《Icarus》2003,161(2):199-222
Disk-resolved reflectance spectra of the surface of Mercury (longitudes 240-300°), obtained in the visual (vis) and near-infrared (NIR) spectral region, are presented and analyzed. The observations were made at the 2.6-m Nordic Optical Telescope with the ALFOSC low-resolution spectrograph on 20 and 22 June 1999 in the wavelength range 520-970 nm with a footprint size of 700 km on the mid-disk of Mercury. A method which enables more accurate correction for telluric line absorptions and atmospheric extinction than that applied on previously published vis-NIR spectra of Mercury is introduced. The resulting reflectance spectra are remarkably linear, lack significant absorption features, and have optical slopes comparable to remotely sensed lunar pure anorthosites. The relation between spectral slope and photometric geometry found by Warell (2002, Icarus 156, 313-317) is confirmed and is explained as caused by strongly backscattering particles with embedded submicroscopic metallic iron in a mature regolith. With the theoretical maturation model of Hapke (2001, J. Geophys. Res. 106 (E5), 10039-10073) an abundance of 0.05-0.3 wt% submicroscopic metallic iron in the regolith for silicate grain sizes in the range 10-80 μm is determined, implying a ferrous iron content in mafic minerals intrinsically lower than that of the lunar highlands. A binary crustal composition model with anorthite linearly mixed with pyroxene provides better spectral fits than a pure anorthitic composition. Comparison with mature lunar pure anorthosite spectra yields a confident upper limit to the FeO content of 3 wt% under the assumption that the surfaces are similarly matured, but this figure probably represents a considerable overestimate. The average mercurian regolith does not seem to be substantially more weathered than the most mature lunar highland soils in terms of abundance of submicroscopic metallic iron, indicating that a steady-state maturation level has been reached. However, the strong relation between optical spectral slope and photometric geometry may imply that the majority of regolith particles are more fine-grained than their lunar counterparts and that the regolith is admixed with complex agglutinate weathering products which are more abundant and more transparent than those of the lunar highlands. This is consistent with more energetic impacts and a higher rate of impact melt production in an iron-poor regolith. An observed relation between the spectral slope and latitude provides evidence that the Ostwald ripening process may be operating at equatorial latitudes on Mercury.  相似文献   

12.
Cristian Carli  Maria Sgavetti 《Icarus》2011,211(2):1034-1048
In spectroscopic remote sensing for the exploration of the surface compositions of Earth and terrestrial planets, reflectance spectra with very low spectral contrast and even devoid of diagnostic absorption bands can be observed, which make the interpretation of the component minerals ambiguous. Using selected examples of terrestrial rock samples from intrusive and effusive geologic systems, we discuss compositional and textural properties related to these particular spectral shapes. We show that: (1) this spectral behaviour is common for coarse grains of multimineral rocks, where the optical coupling is expected to occur between welded mineral particles; (2) it is emphasised by the presence of opaque minerals with various compositions, such as ulvospinel, magnetite and chromite in effusive rock groundmass and in intrusive rocks; (3) it is controlled by the number of silicate phases within which the FeO is distributed, irrespective of the total iron content in the rock: a rock composition with a high number of iron-bearing minerals producing this kind of low contrast, almost featureless spectra is indicated here as “critical mode”; (4) it is also strongly intensified by aqueous alteration of silicates.These observations suggest unpredictable combinations of several different petrographic variables affecting the spectra of some compact rocks, and stimulate both targeted studies to quantitatively relate spectral and petrographic parameters, and the development of appropriate methods of spectral decomposition. Our ongoing work is at present focused on the spectroscopic effects of the FeO concentration in transparent neutral plagioclase, the different compositions of the opaque neutral minerals, and the iron bearing amorphous phases.We also discuss the analogy between the rocks used in the analysis reported here and the crustal rock compositions observed on Mars and inferred for Mercury as well as the compatibility of the factors responsible for the low spectral contrast of terrestrial rock samples with the factors expected for the two planets. We observe that a coarse-grained surface and a composition approaching a critical mode could explain the featureless Acidalia spectra on Mars, and suggest that the still open questions about Mercury’s surface regolith characteristics and composition do not exclude a priori the contribution of some of the factors examined in this paper to the peculiar surface properties of this planet.  相似文献   

13.
Abstract— ‐Mercury has widespread plains deposits proposed to be volcanic in origin. In a Mariner 10 color‐derived parameter image, sensitive to FeO and maturity, these volcanic plains have a value equivalent to, or slightly elevated above, the hemispheric average, thus implying FeO equivalent to, or slightly less than, the hemispheric average (~3 wt% FeO). Since FeO has a solid/liquid distribution coefficient ~1 during partial melting, we estimate the mantle of Mercury to have an FeO abundance equal to the lava flows. This is consistent with models that predict Mercury was assembled from planetesimals formed near the planet's current position. This new estimate of Mercury's bulk FeO (~3 wt%) is consistent with data for the other terrestrial planets that suggest there was a radial gradient in FeO in the solar nebula.  相似文献   

14.
A significant opaque component in Mercury’s crust is inferred based on albedo and spectral observations. Previous workers have favored iron-titanium bearing oxide minerals as the spectrally neutral opaque. A consequence of this hypothesis is that Mercury’s surface would have a high FeO content. An array of remote sensing techniques have not provided definitive constraints on the FeO content of Mercury’s surface. However, spectral observations have not detected a diagnostic 1 μm absorption band and have thus limited the FeO in coexisting silicates to <2 wt.% FeO. In this paper, we assess equilibrium among oxide and silicate minerals to constrain the distribution of iron between opaque oxides and silicates under a variety of environmental conditions. Equilibrium modeling is favored here because the geologic process that produced Mercury’s low-albedo intermediate terrain must have occurred globally, which favors a common widespread igneous process. Based on our modeling, we find that iron-rich ilmenite cannot occur with silicates that do not display a 1 μm absorption feature unless plagioclase abundances are high. However, such high plagioclase abundances are precluded by Mercury’s low albedo. Incorporating equilibrium crystallization modeling with spectral and albedo constraints we find the iron abundance of Mercury’s intermediate terrain is ?10 wt.% FeO. This intermediate iron composition matches constraints provided by visible albedo and total neutron absorption observed by MESSENGER. In fact, the total neutron absorption of mixtures of oxide, plagioclase, olivine and pyroxene for the oxide abundances estimated for Mercury, favor Mg-rich members of the ilmenite-geikielite solid-solution series. This work offers compositional constraints for Fe, Ti, and Mg that will be testable by various MESSENGER instrument data sets after it begins its orbital mission.  相似文献   

15.
Measurements of the disk-integrated reflectance spectrum of Mercury and the Moon have been obtained by the MESSENGER spacecraft. A comparison of spectra from the two bodies, spanning the wavelength range 220-1450 nm, shows that the absolute reflectance of Mercury is lower than that of the nearside waxing Moon at the same phase angle with a spectral slope that is less steep at visible and near-infrared wavelengths. We interpret these results and the lack of an absorption feature at a wavelength near 1000 nm as evidence for a Mercury surface composition that is low in ferrous iron within silicates but is higher in the globally averaged abundance of spectrally neutral opaque minerals than the Moon. Similar conclusions have been reached by recent investigations based on observations from both MESSENGER and Mariner 10. There is weak evidence for a phase-reddening effect in Mercury that is slightly larger in magnitude than for the lunar nearside. An apparent absorption in the middle-ultraviolet wavelength range of the Mercury spectrum detected from the first MESSENGER flyby of Mercury is found to persist in subsequent observations from the second flyby. The current model of space weathering on the Moon, which also presumably applies to Mercury, does not provide an explanation for the presence of this ultraviolet absorption.  相似文献   

16.
Abstract— The plasma environment at Mercury is a rich laboratory for studying the interaction of the solar wind with a planet. Three primary populations of ions exist at Mercury: solar wind, magnetospheric, and pickup ions. These pickup ions are generated through the ionization of Mercury's exosphere or are sputtered particles from the Mercury surface. A comprehensive mission to Mercury, such as MESSENGER (MErcury: Surface, Space ENvironment, GEochemistry, Ranging), should include a sensor that is able to determine the dynamical properties and composition of all these plasma components. An instrument to measure the composition of these ion populations and their three‐dimensional velocity distribution functions must be lightweight, fast, and have a very large field of view. The fast imaging plasma spectrometer (FIPS) is an imaging mass spectrometer, part of NASA's MESSENGER mission, the first Mercury orbiter. This versatile instrument has a very small footprint, and has a mass that is ?1 order of magnitude less than other comparable systems. It maintains a nearly full‐hemisphere field of view, suitable for either spinning or three‐axis‐stabilized platforms. The major piece of innovation to enable this sensor is a new deflection system geometry that enables a large instantaneous (?1.5π) field of view. This novel electrostatic analyzer system is then combined with a position sensitive time‐of‐flight system. We discuss the design and prototype tests of the FIPS deflection system and show how this system is expected to address one key problem in Mercury science, that of the nature of the radar‐bright regions at the Hermean poles.  相似文献   

17.
The composition and chemistry of Mercury’s regolith has been calculated from MESSENGER MASCS 0.3-1.3 μm spectra from the first flyby, using an implementation of Hapke’s radiative transfer-based photometric model for light scattering in semi-transparent porous media, and a linear spectral mixing algorithm. We combine this investigation with linear spectral fitting results from mid-infrared spectra and compare derived oxide abundances with mercurian formation models and lunar samples. Hapke modeling results indicate a regolith that is optically dominated by finely comminuted particles with average area weighted grain size near 20 μm. Mercury shows lunar-style space weathering, with maturation-produced microphase iron present at ∼0.065 wt.% abundance, with only small variations between mature and immature sites, the amount of which is unable to explain Mercury’s low brightness relative to the Moon. The average modal mineralogies for the flyby 1 spectra derived from Hapke modeling are 35-70% Na-rich plagioclase or orthoclase, up to 30% Mg-rich clinopyroxene, <5% Mg-rich orthopyroxene, minute olivine, ∼20-45% low-Fe, low-Ti agglutinitic glass, and <10% of one or more lunar-like opaque minerals. Mercurian average oxide abundances derived from Hapke models and mid-infrared linear fitting include 40-50 wt.% SiO2, 10-35 wt.% Al2O3, 1-8 wt.% FeO, and <25 wt.% TiO2; the inferred rock type is basalt. Lunar-like opaques or glasses with high Fe and/or Ti abundances cannot on their own, or in combination, explain Mercury’s low brightness. The linear mixing results indicate the presence of clinopyroxenes that contain up to 21 wt.% MnO and the presence of a Mn-rich hedenbergite. Mn in M1 crystalline lattice sites of hedenbergite suppresses the strong 1 and 2 μm crystal field absorption bands and may thus act as a strong darkening agent on Mercury. Also, one or more of thermally darkened silicates, Fe-poor opaques and matured glasses, or Mercury-unique Ostwald-ripened microphase iron nickel may lower the albedo. A major part of the total microphase iron present in Mercury’s regolith is likely derived from FeO that is not intrinsic to the crust but has been subsequently delivered by exogenic sources.  相似文献   

18.
Abstract— The origin of hematite detected in Martian surface materials is commonly attributed to weathering processes or aqueous precipitation. Here, we present a new hematite formation mechanism that requires neither water nor weathering. Glass‐rich basalts with Martian meteorite‐like chemistry (high FeO, low Al2O3) oxidized at high (700 and 900 °C) temperatures in air and CO2, respectively, form thin (<1 μm) hematite coatings on their outermost surfaces. Hematite is manifested macroscopically by development of magnetism and a gray, metallic sheen on the glass surface and microscopically by Fe enrichment at the glass surface observed in element maps. Visible and near‐infrared, thermal infrared, and Raman spectroscopy confirm that the Fe enrichment at the oxidized glass surfaces corresponds to hematite mineralization. Hematite formation on basaltic glass is enabled by a mechanism that induces migration of Fe2+ to the surface of an oxidizing glass and subsequent oxidation to form hematite. A natural example of the hematite formation mechanism is provided by a Hawaiian basalt hosting a gray, metallic sheen that corresponds to a thin hematite coating. Hematite coating development on the Hawaiian basalt demonstrates that Martian meteorite‐like FeO contents are not required for hematite coating formation on basalt glass and that such coatings form during initial extrusion of the glassy basalt flows. If gray hematite originating as coatings on glassy basalt flows is an important source of Martian hematite, which is feasible given the predominance of igneous features on Mars, then the requirement of water as an agent of hematite formation is eliminated.  相似文献   

19.
Martian magmas are thought to be rich in chlorine compared with their terrestrial counterparts. Here, we experimentally investigate the effect of chlorine on liquidus depression and near‐liquidus crystallization of olivine‐phyric shergottite NWA 6234 and compare these results with previous experimental results on the effect of chlorine on near‐liquidus crystallization of the surface basalts Humphrey and Fastball. Previous experimental results showed that the change in liquidus temperature is dependent on the bulk composition of the basalt. The effect of chlorine on liquidus depression is greater for lower SiO2 and higher Al2O3 magmas than for higher SiO2 and lower Al2O3 magmas. The bulk composition for this study has lower Al2O3 and higher FeO contents than previous work; therefore, we provide additional constraints on the effect of the bulk composition on the influence of chlorine on near‐liquidus crystallization. High pressure and temperature crystallization experiments were performed at 1 GPa on a synthetic basalt, of the bulk composition of NWA 6234, with 0–4 wt% Cl added to the sample as AgCl. The results are consistent with previous notions that with increasing wt% Cl in the melt, the crystallization temperature decreases. Importantly, our results have a liquidus depression ?T (°C) from added chlorine that is consistent with the difference in bulk composition and suggest a dependence on both the bulk Al2O3 and FeO content. Our results suggest that the addition of chlorine to the Martian mantle may lower magma genesis temperatures and potentially aid in the petrogenesis of Martian magmas.  相似文献   

20.
Abstract— With the recent realization that some meteorites may come from Mars and the Moon, it is worthwhile to consider whether meteorites from Mercury could exist in our collections and, if so, whether they could be recognized. The current state of ignorance about Mercury both increases the potential scientific value of mercurian meteorites and aggravates the problem of identifying them. Here, we review evidence supporting the possibility of impact launch and subsequent orbital evolution that could deliver rocks from Mercury to Earth and suggest criteria that could help identify a mercurian meteorite. Mercurian rocks are probably differentiated igneous rocks or breccias or melt rocks derived therefrom. Solar nebula models suggest that they are probably low in volatiles and moderately enriched in Al, Ti, and Ca oxides. Mercurian surface rocks contain no more than 5% FeO and may contain plagioclase. A significant fraction may be volcanic. They may possess an unusual isotopic composition. Most pristine mercurian rocks should have solidification ages of ~3.7 to ~4.4 Ga, but younger impact-remelted materials are possible. Because we know more about the space environment of Mercury than we do about the planet itself, surface-exposed rocks would be easiest to identify as mercurian. The unique solar-to-galactic cosmic-ray damage track ratio expected in materials exposed near the Sun may be useful in identifying a rock from Mercury. Mercury's magnetic field stands off the solar wind, so that solar-wind implants in mercurian regolith breccias may be scarce or fractionated compared to lunar ones. Mercurian regolith breccias should contain more agglutinates (or their recrystallized derivatives) and impact vapor deposits than any other and should show a higher fraction of exogenic chondritic materials than analogous lunar breccias. No known meteorite group matches these criteria. A misclassified mercurian meteorite would most likely be found among the aubrites or the anorthositic lunar meteorites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号