首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为研究雹暴结构和大冰雹的形成机制,利用潍坊CINRAD/SA新一代天气雷达、青岛S波段双偏振多普勒天气雷达探测数据,结合探空、地面气象观测站观测和实地冰雹调查资料,对2019年8月16日发生在山东诸城的一次罕见强雹暴过程的天气背景、风雹灾害、雷达回波演变、雹云结构及大冰雹形成机制进行分析.结果表明,受冷涡天气系统影响,...  相似文献   

2.
利用常规观测资料和张家界新一代多普勒雷达资料对2020年3月21日晚—22日凌晨发生在湘西北地区的冰雹天气过程进行了分析,结果表明:"上干下湿"喇叭口特征的不稳定层结,合适的0℃层与-20℃层高度,在地面冷空气和辐合线的触发机制下,利于冰雹、雷暴大风和短时强降雨等强对流天气的形成;此次冰雹天气是由典型的超级单体风暴对流...  相似文献   

3.
利用NECP/NCAR 1° ×1°资料和地面加密站、卫星云图、多普勒雷达资料,分析了2011年夏季重庆西部一次强对流天气过程产生的天气背景、中尺度特征、不稳定能量、水汽条件和触发机制,并利用WRF数值模式输出的高分辨率资料,探讨了此次强对流天气的触发机制和演变规律.结果表明:此次对流天气以灾害性大风和短时强降水为主,...  相似文献   

4.
利用高空及地面天气图、宝鸡多普勒雷达资料,分析了2015年7月18日和2016年6月12日关中西部陇县两次大冰雹强对流天气成因及雷达特征.分析表明,两次过程环境条件比较一致,冷涡槽后西北气流携带的冷空气形成了对流不稳定层结有利条件,地面露点锋是强对流的触发机制.2015年7月18日冰雹是由中气旋的超级单体风暴产生,20...  相似文献   

5.
沈阳地区一次冰雹天气过程形成机制的数值模拟   总被引:12,自引:1,他引:11  
隋东  沈桐立  张涛 《气象》2005,31(7):20-23
应用中尺度MM5数值预报模式对2003年6月28日发生在沈阳地区的一次冰雹强对流天气过程进行数值模拟和分析,并与实况观测资料进行比较,成功地模拟出中尺度强对流天气系统演变规律,得出这次强对流天气过程的触发机制,为冰雹强对流天气的预报提供有应用价值的思路和方法。此次冰雹强对流天气过程主要是受深厚的低涡天气系统作用的结果,高低空急流的耦合、干湿空气间强的风垂直切变和上层干冷、下层暖湿的位势不稳定层结是此次冰雹强对流爆发的重要触发机制。  相似文献   

6.
针对2012年夏季发生在西宁地区的两次冰雹天气过程,从天气形势、物理量场和雷达回波特征、闪电定位特征等几方面进行了综合分析。结果表明:这两次冰雹天气均发生在典型的高空槽型环流背景下,较好的对流不稳定条件、水汽和较强的垂直风切变条件下。6月5日冰雹天气在整层湿度较大的环境下,受地形和局地热力作用,产生能量分布差异,由地面冷锋抬升触发产生。7月13日的冰雹天气在上干下湿的环境下,是暖区切变触发的局地强对流。应用雷达资料能很好地监测中尺度天气系统的发展演变过程,回波强度、回波顶高的变化和速度对的出现及雷达产品的应用对冰雹天气的出现具有指示意义,对今后的防雹减灾工作有较好的应用价值。  相似文献   

7.
利用2008年广西7次明显降雹过程的探空资料和常用的新一代多普勒天气雷达产品,结合冰雹云的触发机制和雹云三维结构,分析广西冰雹云出现的先兆特征和冰雹云在雷达产品中的特征判别指标.  相似文献   

8.
选取2011年4月30日-5月2日发生在河池市的3次冰雹天气过程,应用常规观测资料并结合雷达回波资料.从天气形势、物理量要素和雷达回波等几方面进行综合分析,寻找冰雹天气出现前期共同特征.结果表明:500hPa高空槽引导低层切变及地面锋面移动是冰雹天气发生的环流背景;冰雹天气出现在对流性不稳定层结条件下,不稳定能量得到累...  相似文献   

9.
利用地面观测资料、天气雷达资料和ECMWF-ERA5逐小时0.25°×0.25°再分析资料,主要从环境条件和触发机制两个方面,对2019年6月8日(简称过程A)、9日(简称过程B)影响江苏省北部的两次冷涡型强对流天气过程进行了对比分析。结果表明: 过程A是由暖湿气流引起的短时强降水伴随雷暴大风的湿对流天气;过程B则是在高层西北气流下由干冷平流强迫引起的大风冰雹伴随短时强降水的混合对流天气。过程A,由暖湿气流形成强对流不稳定层结,垂直风切变强度一般,湿层深厚,有利于短时强降水的发生;过程B,中高层的较强干冷平流叠加在低层暖湿平流上而形成强对流不稳定层结,强的垂直风切变位于中低层,配合较强的动力抬升条件,有利于冰雹的发生。两次天气过程的触发机制都是地面辐合线。过程A的预报重点为水汽条件和来自上游的对流系统与当地地面辐合线的耦合;过程B的预报重点为大气的不稳定度和冷涡后部冷空气的干侵入与地面辐合线的耦合。  相似文献   

10.
基于气象观测资料、NCEP再分析资料、火箭作业资料等对2019年4月11日百色市一次强降水伴有冰雹的天气过程进行分析,并对该次过程进行的人工防雹作业进行探讨,结果表明:该次天气过程是由高空槽引导低空切变线及地面冷空气南下形成的,地面干线有利于触发中尺度对流系统的产生.过程发生前,强盛的西南暖低压控制百色市,为对流活动的...  相似文献   

11.
12.
A simplified vegetation distribution prediction scheme is used in combination with the Biosphere-Atmosphere Transfer Scheme (BATS) and coupled to a version of the NCAR Community Climate Model (CCM1) which includes a mixed-layer ocean. Employed in an off-line mode as a diagnostic tool, the scheme predicts a slightly darker and slightly rougher continental surface than when BATS' prescribed vegetation classes are used. The impact of tropical deforestation on regional climates, and hence on diagnosed vegetation, differs between South America and S.E. Asia. In the Amazon, the climatic effects of removing all the tropical forest are so marked that in only one of the 18 deforested grid elements could the new climate sustain tropical forest vegetation whereas in S.E. Asia in seven of the 9 deforested elements the climate could continue to support tropical forest. Following these off-line tests, the simple vegetation scheme has been coupled to the GCM as an interactive (or two-way) submodel for a test integration lasting 5.6 yr. It is found to be a stable component of the global climate system, producing only ~ 3% (absolute) interannual changes in the predicted percentages of continental vegetation, together with globally-averaged continental temperature increases of up to + 1.5 °C and evaporation increases of 0 to 5 W m–2 and no discernible trends over the 67 months of integration. On the other hand, this interactive land biosphere causes regional-scale temperature differences of ± 10 °C and commensurate disturbances in other climatic parameters. Tuning, similar to the q-flux schemes used for ocean models, could improve the simulation of the present-day surface climate but, in the longer term, it will be important to focus on predicting the characteristics of the continental surface rather than simple vegetation classes. The coupling scheme will also have to allow for vegetation responses occurring over longer timescales so that the coupled system is buffered from sudden shocks.  相似文献   

13.
Summary The boundary-layer wind field during weak synoptic conditions is largely controlled by the nature of the landscape. Mesoscale (sub-synoptic) circulations result from horizontal gradients of sensible heat flux due to variation in local topography, variation in surface-cover, and discontinuities such as land-sea contrasts. Such flows are usually referred to as thermally-driven circulations, and are diurnal in nature and often predictable. In this paper we use a state-of-the-art non-hydrostatic computer model to shed light on the physical mechanisms that drive a persistent easterly wind that develops in the afternoon in the Mackenzie Basin, New Zealand. The easterly – Canterbury Plains Breeze (CPB) – is observed early in the afternoon and is often intense, with mean wind speeds reaching up to 12 m s−1. Although computer modelling in mountainous terrain is extremely challenging, the model is able to simulate this circulation satisfactorily. To further investigate the mechanisms that generate the Canterbury Plains Breeze, two additional idealized model experiments are performed. With each experiment, the effects of the synoptic scale wind and the ocean around the South Island, New Zealand were successively removed. The results show that contrary to previous suggestions, the Canterbury Plains Breeze is not an intrusion of the coastal sea breeze or the Canterbury north-easterly, but can be generated by heating of the basin alone. This conclusion highlights the importance of mountain basins and saddles in controlling near-surface wind regimes in complex terrain.  相似文献   

14.
Earlier GCM studies have expressed the concern that an enhancement of greenhouse warming might increase the occurrence of summer droughts in mid-latitudes, especially in southern Europe and central North America. This could represent a severe threat for agriculture in the regions concerned, where summer is the main growing season. These predictions must however be considered as uncertain, since most studies featuring enhanced summer dryness in mid-latitudes use very simple representations of the land-surface processes ("bucket" models), despite their key importance for the issue considered. The current study uses a regional climate model including a land-surface scheme of intermediate complexity to investigate the sensitivity of the summer climate to enhanced greenhouse warming over the American Midwest. A surrogate climate change scenario is used for the simulation of a warmer climate. The control runs are driven at the lateral boundaries and the sea surface by reanalysis data and observations, respectively. The warmer climate experiments are forced by a modified set of initial and lateral boundary conditions. The modifications consist of a uniform 3 K temperature increase and an attendant increase of specific humidity (unchanged relative humidity). This strategy maintains a similar dynamical forcing in the warmer climate experiments, thus allowing to investigate thermodynamical impacts of climate change in comparative isolation. The atmospheric CO 2 concentration of the sensitivity experiments is set to four times its pre-industrial value. The simulations are conducted from March 15 to October 1st, for 4 years corresponding to drought (1988), normal (1986, 1990) and flood (1993) conditions. The numerical experiments do not present any great enhancement of summer drying under warmer climatic conditions. First, the overall changes in the hydrological cycle (especially evapotranspiration) are of small magnitude despite the strong forcing applied. Second, precipitation increases in spring lead to higher soil water recharge during this season, compensating for the enhanced soil moisture depletion occurring later in the year. Additional simulations replacing the plant control on transpiration with a bucket-type formulation presented increased soil drying in 1988, the drought year. This suggests that vegetation control on transpiration might play an important part in counteracting an enhancement of summer drying when soil water gets limited. Though further aspects of this issue would need investigating, our results underline the importance of land-surface processes in climate integrations and suggest that the risk of enhanced summer dryness in the region studied might be less acute than previously assumed, provided the North American general circulation does not change markedly with global warming.  相似文献   

15.
Simultaneous particle-image velocimetry and laser-induced fluorescence combined with large-eddy simulations are used to investigate the flow and pollutant dispersion behaviour in a rural-to-urban roughness transition. The urban roughness is characterized by an array of cubical obstacles in an aligned arrangement. A plane fence is added one obstacle height h upstream of the urban roughness elements, with three different fence heights considered. A smooth-wall turbulent boundary layer with a depth of 10h is used as the approaching flow, and a passive tracer is released from a uniform line source 1h upstream of the fence. A shear layer is formed at the top of the fence, which increases in strength for the higher fence cases, resulting in a deeper internal boundary layer (IBL). It is found that the mean flow for the rural-to-urban transition can be described by means of a mixing-length model provided that the transitional effects are accounted for. The mixing-length formulation for sparse urban canopies, as found in the literature, is extended to take into account the blockage effect in dense canopies. Additionally, the average mean concentration field is found to scale with the IBL depth and the bulk velocity in the IBL.  相似文献   

16.
Summary A formation of a cold air lake in a basin is studied with a mesometeorological model.A dynamic Boussinesq hydrostatic mesoscale numerical model is developed in a staggered orthogonal grid with a horizontal resolution of 1 km and with a varying vertical grid. The topography is presented in a block shape so that computation levels are horizontal.The mesometeorological model is tested in three idealized topography cases (a valley, a single mountain, a basin) and test results are discussed.In an alpine basin surrounded by mountains and plateaus the air is supposed to be stagnant at the beginning of the night. Due to differences in radiation cooling an inversion layer is formed in the basin and local wind circulation is studied by model simulations.With 14 Figures  相似文献   

17.
一次台风前部龙卷的多普勒天气雷达分析   总被引:15,自引:3,他引:12       下载免费PDF全文
通过分析2004年8月25日发生在浙江省宁波市的一次台风前部龙卷发生发展的环境特征, 发现该龙卷发生在台风前部风切变区里, 尽管当时涡度、散度等物理量对于深对流发展不是非常有利, 但下湿中干、强的垂直风切变及地形条件等还是有利于局地弱龙卷的产生; 在宁波新一代天气雷达产品上表现为强的钩状回波, 速度场上有相邻的正负速度中心及强的组合切变值等。通过多个反射率产品、剖面产品等综合分析了该风暴的三维结构, 初步了解此类弱龙卷的发生机理, 为以后的预报提供一些经验。  相似文献   

18.
Frequent fog severely restricts evaporation from blanket bogs in Newfoundland because it more than halves the radiant energy input, and it eliminates the vapor pressure deficit, resulting in evaporation at the equilibrium rate (average = 0.99 during fog). During these periods, there is no surface resistance to evaporation because the bog has been wetted by fog drip, and although the latent heat flux dominates over sensible heat (average = 0.8), both are small. In contrast, the surface dries during clear periods, increasing the surface resistance to evaporation so that sensible heat becomes more important ( = 1.05). When the mosses are dry, evaporation is below the equilibrium rate ( = 0.87), although the higher available energy ensures that actual evaporation is higher. During clear periods, daily evaporation averaged 2.5 mm, compared to 1.1 and 0.7 mm for fog and rain, respectively. The suppressed evaporation at this site is important in maintaining appropriate hydrological conditions for blanket bog development.  相似文献   

19.
Summary An eddy effect of tropical deep convection on the large-scale momentum, resp vorticity budget is investigated. The process is specified by a simple parameterization approach which is based on a concept of rotating clouds exerting a momentum on the large-scale flow. The cloud rotation is associated with the thermal properties of a cloud ensemble by the principle of conservation of potential vorticity. A decomposition of cloud classes is applied in consistency with the thermodynamical parameterization scheme of Arakawa and Schubert (1974).The parameterization is tested with observations of GATE74, Phase III. The data are processed on a B/C-scale grid (55km) in a region within 9N and 16N, and between 21W and 27W, and with a vertical resolution of 41 levels. The parameterization results correspond to the observed patterns, especially in situations with strong large-scale wind shear. The findings suggest that certain large-scalle flow regimes provoke convective scale momentum generation rather than redistributing large-scale momentum by convective circulations.With 10 Figures  相似文献   

20.
Spatial structure of a jet flow at a river mouth   总被引:1,自引:0,他引:1  
The present work concentrates on the latest data measured in the Jordan river flow in lake Kinneret. Spectral characteristics of fluctuating velocity components have been obtained and processed. The three-dimensional structure of turbulence along the flow has been described. The main features of the jet flow turbulence in the river mouth are: a) The supply of turbulent energy changes due to different mechanisms along the flow. b) The structure of turbulence formed in the river decays rapidly along the flow, and c) In the sand area and beyond it, a significant generation of turbulent energy occurs. Quantitative estimations of the above effects were carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号