首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Probably most meteor showers have a cometary origin. Investigation of Near-Earth asteroids' orbital evolution to determine whether they have related meteor showers is necessary to determine which asteroids evolved from comets. The results of calculations show that asteroid Orthos' orbit is an octuple Earth-crosser. Therefore, if Orthos has an old meteoroid stream it may produce eight meteor showers observable on the Earth. The existence of four Orthos' Northern meteor showers is confirmed by our search in the published catalogues of meteor radiants and orbits or in the archives of the IAU Meteor Data Center (Lund, Sweden).  相似文献   

2.
Probably the majority of meteor showers has a cometary origin. Investigation of Near-Earth asteroids' orbital evolution to determine whether they have related meteor showers are necessary to determine which asteroids evolved from comets. The results of calculations show that asteroid Orthos' orbit is an octuple Earth-crosser. Therefore, if Orthos has an old meteoroid stream it may produce eight meteor showers observable on the Earth. The existence of four Orthos' Northern meteor showers is confirmed by our search in the published catalogues of meteor radiants and orbits or in the archives of the IAU Meteor Data Center (Lund, Sweden).  相似文献   

3.
Probably most meteor showers have a cometary origin. Investigation of Near-Earth asteroids' orbital evolution to determine whether they have related meteor showers is necessary to determine which asteroids evolved from comets. The results of calculations show that asteroid Orthos' orbit is an octuple Earth-crosser. Therefore, if Orthos has an old meteoroid stream it may produce eight meteor showers observable on the Earth. The existence of four Orthos' Northern meteor showers is confirmed by our search in the published catalogues of meteor radiants and orbits or in the archives of the IAU Meteor Data Center (Lund, Sweden).  相似文献   

4.
Three bright fireballs belonging to the August θ‐Aquillid (ATA) meteor shower were photographed by the Tajikistan fireball network in 2009. Two of them are classified as the meteorite‐dropping fireballs according to the determined parameters of the atmospheric trajectories, velocities, masses, and densities. Detection of the more dense bodies among cometary meteoroids points to a heterogeneous composition of the parent comet, and supports the suggestion that some meteorites might originate in the outer solar system, in the given case from the Jupiter‐family comet reservoir. A search for the stream's parent was undertaken among the near‐Earth asteroids (NEAs); as a result, the asteroid 2004MB6 was identified as a possible progenitor of the ATA meteoroid stream. Investigation of the orbital evolution of the 2004MB6 and the fireball‐producing meteoroid TN170809A showed that both objects have similar secular variations in the orbital elements during 7 kyr. The comet‐like orbit of the 2004MB6 and its association with the ATA shower suppose a cometary origin of the asteroid.  相似文献   

5.
Abstract— Chondrules, silicate spheres typically 0.1 to 1 mm in diameter, are the most abundant constituents in the most common meteorites falling on Earth, the ordinary chondrites. In addition, many primitive meteorites have calcium‐aluminum‐rich inclusions (CAIs). The question of whether comets have chondrules or CAIs is relevant to understanding what the interior of a comet is like and what a cometary meteorite might be like. In addition, one prominent model for forming chondrules and CAIs, the X‐wind model, predicts their presence in comets, while most other models do not. At present, the best way to search for chondrules and CAIs in comets is through meteor showers derived from comets, in particular, the Leonid meteor shower. Evidence potentially could be found in the overall mass distribution of the shower, in chemical analyses of meteors, or in light curves. There is no evidence for a chondrule abundance in the Leonid meteors similar to that found in chondritic meteorites. There is intriguing evidence for chondrule‐ or CAI‐sized objects in a small fraction of the light curves, but further work is required to generate a definitive test.  相似文献   

6.
Using the Everhart radau19 numerical integration method, the orbital evolution of the near-Earth asteroid 2003EH1 is investigated. This asteroid belongs to the Amor group and is moving on a comet-like orbit. The integrations are performed over one cycle of variation of the perihelion argument ω. Over such a cycle, the orbit intersect that of the Earth at eight different values of ω. The orbital parameters are different at each of these intersections and so a meteoroid stream surrounding such an orbit can produce eight different meteor showers, one at each crossing. The geocentric radiants and velocities of the eight theoretical meteor showers associated with these crossing points are determined. Using published data, observed meteor showers are identified with each of the theoretically predicted showers. The character of the orbit and the existence of observed meteor showers associated with 2003EH1 confirm the supposition that this object is an extinct comet.  相似文献   

7.
中国古代火流星记录的统计分析   总被引:1,自引:0,他引:1  
本文对中国古代火流星记录,按年统计,用功率谱这一数学方法对它们进行分析。结果发现声音是衡量火流星起源的一个重要参数。有声音的火流星具有170.6±0.0,102.4±0.0,66.1±2.2,27.3±0.4,23.3±0.0,17.9±0.4,14.8±0.1,12.4±0.1,10.5±0.3年的可能周期。有声火流星与陨石坠落周期基本相同,是与陨石同源的,来自小行星带。我们认为影响有声火流星和陨石下落的因素是太阳辐射引起的Yarkovsky效应和木星摄动。有声火流星的10.5±0.3,23.2±0.0,66.1±2.2年周期与Yarkovsky效应有关。12.4±0.1,17.9±0.4,102.4±0.0,170.6±0.0周期与木星摄动有关。至于14.8±0.1,27.3±0.4的周期,可能是木星摄动与Yarkovsky效应联合作用或其他原因所致。  相似文献   

8.
Meteorites are delivered from the asteroid belt by way of chaotic zones (Wisdom 1985a). The dominant sources are believed to be the chaotic zones associated with the ν6 secular resonance, the 3:1 mean motion resonance, and the 5:2 mean motion resonance. Though the meteorite transport process has been previously studied, those studies have limitations. Here I reassess the meteorite transport process with fewer limitations. Prior studies have not been able to reproduce the afternoon excess (the fact that approximately twice as many meteorites fall in the afternoon as in the morning) and suggested that the afternoon excess is an observational artifact; here it is shown that the afternoon excess is in fact consistent with the transport of meteorites by way of chaotic zones in the asteroid belt. By studying models with and without the inner planets it is found that the inner planets significantly speed up the transport of meteorites.  相似文献   

9.
Impact events have played a central role in the life of meteorites. They compacted and lithified the dust from which meteorites are made; produced shock minerals, shock melting, and shock blackening of meteoritic minerals on their parent bodies; turned their parent bodies into rubble; and dispersed at least some pieces of this rubble, sending them to Earth as meteorites. Thus, as well as owing their very existence to the occurrence of catastrophic disruptions, meteorites contain physical ground truth concerning the impact and disruption environment of the solar system. Reviewing these aspects of the impact-meteorite connection, we conclude that impacts severe enough to disrupt asteroids were rare in the earliest stages of the solar nebula, when meteorite parent bodies accreted and were lithified. Likewise, though catastrophic disruptions clearly have occurred over the past several billion years, the small number of exposure events seen in the meteoritic cosmic ray age record indicates that such disruptions at these times also were rare. However, catastrophic disruptions must have been very prevalent during the first billion years of the solar system, resulting in the widespread asteroid macroporosity inferred from the comparison of asteroid bulk densities to meteorite grain densities.  相似文献   

10.
A new meteroid stream—October Ursa Majorids—was announced by Japanese observers on Oct. 14–16, 2006 (Uehara et al. 2006). Its weak manifestation was detected among coincidental major meteor showers (N/S Taurids, Orionids), as its meteors radiated from a higher placed radiant on the northern sky. We have tried to find out previous displays of the stream throughout available meteor orbits databases, and among ancient celestial phenomena records. Although we got no obvious identification, there are some indications that it could be a meteor shower of cometary origin with weak/irregular activity, mostly overlayed by regular coincidental meteor showers. With a procedure based on D-criterion (Southworth and Hawkins 1963) we found a few records in IAU MDC database of meteor photographic orbits which fulfill common similarity limits, for October Ursae Majorids. However, their real association cannot be established, yet. With respect to the mean orbit of this stream, we suggest for its parent body a long-period comet.  相似文献   

11.
We propose that the Taurid meteor shower may contain bodies able to survive and be recovered as meteorites. We review the expected properties of meteorite‐producing fireballs, and suggest that end heights below 35 km and terminal speeds below 10 km s?1 are necessary conditions for fireballs expected to produce meteorites. Applying the meteoroid strength index (PE criteria) of Ceplecha and McCrosky (1976) to a suite of 33 photographically recorded Taurid fireballs, we find a large spread in the apparent meteoroid strengths within the stream, including some very strong meteoroids. We also examine in detail the flight behavior of a Taurid fireball (SOMN 101031) and show that it has the potential to be a (small) meteorite‐producing event. Similarly, photographic observations of a bright, potential Taurid fireball recorded in November of 1995 in Spain show that it also had meteorite‐producing characteristics, despite a very high entry velocity (33 km s?1). Finally, we note that the recent Maribo meteorite fall may have had a very high entry velocity (28 km s?1), further suggesting that survival of meteorites at Taurid‐like velocities is possible. Application of a numerical entry model also shows plausible survival of meteorites at Taurid‐like velocities, provided the initial meteoroids are fairly strong and large, both of which are characteristics found in the Taurid stream.  相似文献   

12.
The author carried out a study of pulverised cosmic matter extracted from the soil at the fall locality of the Sikhote Alin iron meteorite shower. Three forms of dust were distinguishable: meteoritic, sharp-angled, irregular particles from the break-up of the meteorite; meteoric, spherical, magnetic particles from ablation; and micro meteorites. Meteoritic and meteoric dust was also discovered in the soil of the regions of fall of the Boguslavka and Yardymly iron meteorites. Experiments made by the author for the purpose of obtaining artificial meteoric dust from meteoritic matter of various types have shown that the meteoric dust obtained from stony meteorites is composed of spherules similar to those extracted from the soil in the areas of fall of the Sikhote Alin, Boguslavka and Yardymly iron meteorites. Cosmic dust, the particles of which are usually called micrometeorites, due to their small size, are not subjected to the influence of temperature as they pass through the Earth's atmosphere and they reach the Earth's surface unaltered. It is proposed that meteoric and cosmic dust comprises the largest part of the cosmic matter falling onto the Earth:  相似文献   

13.
Abstract– The fall of meteorites has been interpreted as divine messages by multitudinous cultures since prehistoric times, and meteorites are still adored as heavenly bodies. Stony meteorites were used to carve birds and other works of art; jewelry and knifes were produced of meteoritic iron for instance by the Inuit society. We here present an approximately 10.6 kg Buddhist sculpture (the “iron man”) made of an iron meteorite, which represents a particularity in religious art and meteorite science. The specific contents of the crucial main (Fe, Ni, Co) and trace (Cr, Ga, Ge) elements indicate an ataxitic iron meteorite with high Ni contents (approximately 16 wt%) and Co (approximately 0.6 wt%) that was used to produce the artifact. In addition, the platinum group elements (PGEs), as well as the internal PGE ratios, exhibit a meteoritic signature. The geochemical data of the meteorite generally match the element values known from fragments of the Chinga ataxite (ungrouped iron) meteorite strewn field discovered in 1913. The provenance of the meteorite as well as of the piece of art strongly points to the border region of eastern Siberia and Mongolia, accordingly. The sculpture possibly portrays the Buddhist god Vai?ravana and might originate in the Bon culture of the eleventh century. However, the ethnological and art historical details of the “iron man” sculpture, as well as the timing of the sculpturing, currently remain speculative.  相似文献   

14.
Quick assessment of hazardous effects from impacts of large celestial bodies is achieved through the development of a new consequence calculator. A distinctive feature of this calculator is a new block, the Hazardous-Orbit Constructor, which simulates the conditions of entry of a celestial body into the Earth’s atmosphere and determines the orbital parameters of the body based on given atmospheric entry conditions. This block is used to simulate the atmospheric entry conditions of known asteroids and meteoroids and to determine the orbital parameters of known bolides leading to meteorite fall events. For the case of asteroid 2008 TC3 and the P?ibram meteorite, it is shown that within the potential impact area of the celestial body, the atmospheric entry angle may vary considerably.  相似文献   

15.
The dynamical evolution of meteoroid streams associated with cornets Encke, Halley, Machholz 1986 VIII and asteroid Phaethon is discussed. It is shown that the planetary perturbations can greatly increase the streams thickness and each stream may produce several couples of meteor showers active in different seasons of the year. The theoretical and observed data are in a satisfactory accordance.  相似文献   

16.
On Christmas Day 1704, at 17 h (UT), a meteorite fell in Terrassa (about 25 km NW of Barcelona). The meteorite fall was seen and heard by many people over an area of several hundred kilometers and it was recorded in several historical sources. In fact, it was interpreted as a divine sign and used for propaganda purposes during the War of the Spanish Succession. Although it was believed that meteorite fragments were never preserved, here we discuss the recent discovery of two fragments (49.8 and 33.7 g) of the Barcelona meteorite in the Salvador Cabinet collection (Botanic Institute of Barcelona). They are very well preserved and partially covered by a fresh fusion crust, which suggests a prompt recovery, shortly after the fall. Analysis of the fragments has revealed that the Barcelona meteorite is an L6 ordinary chondrite. These fragments are among the oldest historical meteorites preserved in the world.  相似文献   

17.
Abstract— The complete (or near complete) differentiation of a chondritic parent body is believed to result in an object with an Fe-Ni core, a thick olivine-dominated mantle and a thin plagioclase/pyroxene crust. Compositional groupings of iron meteorites give direct evidence that at least 60 chondritic parent bodies have been differentiated and subsequently destroyed. A long standing problem has been that our meteorite collections, and apparently our asteroid observations as well, show a great absence of olivine-dominated metal-free mantle material. While the basaltic achondrites (HED meteorites) represent metal-free pyroxene-dominated crustal samples, the isotopic and geochemical evidence implies that this class is derived from only one parent body (perhaps Vesta). Thus the meteoritic (and perhaps astronomical) evidence also suggests a great absence of crustal material resulting from the collisional disruption of numerous parent bodies. One explanation for the rarity of olivine-dominated metal-free and basaltic asteroids that fits all the available evidence is that all differentiated parent bodies, with the exception of Vesta, were either disrupted or had their crusts and mantles stripped very early in the age of the solar system. The resulting basaltic and olivine-dominated metal-free fragments were continually broken down until their sizes dropped at least below our current astronomical measurement limit (~5–10 km for inner-belt objects) and perhaps completely comminuted such that meteorite samples are no longer delivered. Because of their greater strengths and longer survival time in interplanetary space, only the iron and the stony-iron meteorites remain as the final tracers of this differentiation and collisional history. However, other scenarios remain plausible such as those which invoke “space weathering” processes that effectively disguise the distinctive basaltic and olivine spectra of possible remnant crustal and mantle material within the main asteroid belt.  相似文献   

18.
The asteroid 3200 Phaethon is suggested as a candidate for direct impact research. The object is considered to be an extinct comet and the parent of the Geminid meteor shower. One could say that this provides a possible argument for a space mission. Based on such a mission, this paper proposes to investigate the nature of the extinct comet and the additional interesting possibility of artificially generated meteor showers.
Dust trail theory can calculate the distribution of a bundle of trails and be used to show in which years artificial meteors would be expected. Results indicate that meteor showers will be seen on Earth about 200 yr after the event, on 2022 April 12.  相似文献   

19.
Abstract— We present data for 259 meteoric fireballs observed with the Canadian camera network, including velocities, heights, orbits, luminosities along each trail, estimates of preatmospheric masses and surviving meteorites (if any) as well as membership in meteor showers. Some 213 of the events comprise an unbiased sample of the 754 fireballs observed in a total of 1.51 × 1010 km2 h of clear-sky observations. The number of fireballs and the amount of clear sky in which they were recorded are given for each day of the year. We find at least 37% of the unbiased sample are members of some 15 recognized meteor showers. Preatmospheric masses, based on an assumed luminous efficiency of 0.04 for velocities >10 km s?1, range from 1 g for some very fast fireballs up to hundreds of kilograms for the largest events. We present plots and equations for the flux, as a function of initial mass, for the entire group of fireballs and for some subgroups: meteorite-dropping objects; meteor shower members; groups that appear to be mainly of asteroidal or cometary origin; and for very fast objects. For masses of a few kilograms, asteroidal objects outnumber cometary ones. Cometary objects attain greater peak brightness than asteroidal ones of equal mass largely due to higher velocity, but also because they fragment more severely. For 66 fireballs, we estimate the meteoroid density using photometric and dynamic masses. Presumed cometary objects have typical densities near 1.0, while asteroidal values show two groups that suggest meteoroids similar to carbonaceous and ordinary chondrites. Our basic data may be used by others for further studies or to reexamine our results using assumptions different from those employed in this paper.  相似文献   

20.
We investigate the possibility of detectable meteor shower activity in the atmosphere of Venus. We compare the Venus-approaching population of known periodic comets, suspected cometary asteroids and meteor streams with that of the Earth. We find that a similar number of Halley-type comets but a substantially lesser population of Jupiter family comets approach Venus. Parent bodies of prominent meteor showers that might occur at Venus have been determined based on minimum orbital distance. These are: Comets 1P/Halley, parent of the η Aquarid and Orionid streams at the Earth; 45P/Honda-Mrkos-Pajdusakova which currently approaches the venusian orbit to 0.0016 AU; three Halley-type comets (12P/Pons-Brooks, 27P/Crommelin and 122P/de Vico), all intercepting the planet's orbit within a 5-day arc in solar longitude; and Asteroid (3200) Phaethon, parent of the December Geminids at the Earth. In addition, several minor streams and a number of cometary asteroid orbits are found to approach the orbit of Venus sufficiently close to raise the possibility of some activity at that planet. Using an analytical approach described in Adolfsson et al. (Icarus 119 (1996) 144) we show that venusian meteors would be as bright or up to 2 magnitudes brighter than their Earth counterparts and reach maximum luminosity at an altitude range of 100-120, 20-30 km higher than at the Earth, in a predominantly clear region of the atmosphere. We discuss the feasibility of observing venusian showers based on current capabilities and conclude that a downward-looking Venus-orbiting meteor detector would be more suitable for these purposes than Earth-based monitoring. The former would detect a shower of an equivalent Zenithal Hourly Rate of at least several tens of meteors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号