首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The Milky Way is a spiral galaxy with (or without) a bar-like central structure. There is evidence that the distribution of suspected cosmic ray sources, such as supernova remnants, are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We investigate and measure how the propagation of Galactic cosmic rays is affected by a cosmic ray source distribution associated with spiral arm structures.We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied.We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth’s position relative to the spiral arms. Similar finding have been obtained for low energy protons and electrons albeit at smaller magnitude. We find that even fractional contributions of a spiral arm component to the total cosmic ray source distribution influences the spectra on the Earth. This is apparent when compared to an axisymmetric radial source distribution as well as with respect to the Earth’s position relative to the spiral arm structure. We demonstrate that the presence of a Galactic bar manifests itself as an overall excess of low energy electrons at the Earth.Using a spiral arm geometry as a cosmic ray source distributions offers a genuine new quality of modeling and is used to explain features in cosmic ray spectra at the Earth that are else-wise attributed to other propagation effects. We show that realistic cosmic ray propagation scenarios have to acknowledge non-axisymmetric source distributions.  相似文献   

2.
The positive identification of the Rock Elm impact structure (Wisconsin, USA) and the Upheaval Dome (Utah, USA) as impact craters was complicated by a lack of distinctive shock features in the record. Low‐impedance surface layers over high‐impedance bedrock affect energy coupling and shock effects in the substrate; in both cases, removal of surface sediments erased most of the original impact structures, thereby making identification of the impact origin difficult. In this study, a combination of laboratory and 3‐D numerical experiments reveals the underlying processes controlling subsurface deformation and demonstrates that a low‐impedance layer can reduce expression of peak shock pressures left in the rock record, as at the Rock Elm and the Upheaval Dome impact sites. 3‐D CTH models of the Rock Elm impact structure predict that peak shock pressures should fall below the hugoniot elastic limit of quartz in the basement rocks, yet still induce permanent deformation. The model predicts peak pressures around 5–10 GPa, levels consistent with field observations of shocked quartz from both Rock Elm and the Upheaval Dome. Consequently, other impact sites exhibiting minimal shock features might be explained.  相似文献   

3.
Here we present a study of the abundance and orientation of planar deformation features (PDFs) in the Vakkejokk Breccia, a proposed lower Cambrian impact ejecta layer in the North‐Swedish Caledonides. The presence of PDFs is widely accepted as evidence for shock metamorphism associated with cosmic impact events and their presence confirms that the Vakkejokk Breccia is indeed the result of an impact. The breccia has previously been divided into four lithological subunits (from bottom to top), viz. lower polymict breccia (LPB), graded polymict breccia (GPB), top sandstone (TS), and top conglomerate (TC). Here we show that the LPB contains no shock metamorphic features, indicating that the material derives from just outside of the crater and represents low‐shock semi‐autochthonous bombarded strata. In the overlying, more fine‐grained GPB and TS, quartz grains with PDFs are relatively abundant (2–5% of the grain population), and with higher shock levels in the upper parts, suggesting that they have formed by reworking of more distal ejecta by resurge of water toward the crater in a marine setting. The absence of shocked quartz grains in the TC indicates that this unit represents later slumps associated with weathering and erosion of the protruding crater rim. Sparse shocked quartz grains (<0.2%) were also found in sandstone beds occurring at the same stratigraphic level as the Vakkejokk Breccia 15–20 km from the inferred crater site. It is currently unresolved whether the sandstone at these distal sites is related to the impact or just contains rare reworked quartz grains with PDFs.  相似文献   

4.
Abstract— The Serra da Cangalha crater structure in northeast Brazil, ?13 km in diameter, has long been widely considered to be a confirmed impact structure, based on reports of shatter cone findings. Only very limited field work has been carried out at this crater structure. Landsat Thematic Mapper (TM) and Shuttle Radar Topography Mission (SRTM) data sets for the region around this crater structure are compared here with regard to their suitability to determine first‐order structural detail of impact crater structures. The SRTM data provide very detailed information regarding drainage patterns and topography. A pronounced central ring of up to 300 m elevation above the surrounding area, two comparatively subdued intermediate rings of 6 and 10.5 km diameter, respectively, and the broad, complex crater rim of up to >100 m elevation can be distinguished in the Serra da Cangalha data. The maximum cratering‐related regional deformation (radial and concentric features) seems to be limited to a radial distance of 16–18 km from the center of the structure. A first comparison of macrostructural information from several impact structures with that from Serra da Cangalha does not yield firm trends, but the database is still very small at this stage. The varied nature of the target geology strongly influences the development of structural features in any impact event.  相似文献   

5.
We discuss the effects of certain dynamic features of space environment in the heliosphere, the geo-magnetosphere, and the earth’s atmosphere. In particular, transient perturbations in solar wind plasma, interplanetary magnetic field, and energetic charged particle (cosmic ray) fluxes near 1 AU in the heliosphere have been discussed. Transient variations in magnetic activity in geo-magnetosphere and solar modulation effects in the heliosphere have also been studied. Emphasis is on certain features of transient perturbations related to space weather effects. Relationships between geomagnetic storms and transient modulations in cosmic ray intensity (Forbush decreases), especially those caused by shock-associated interplanetary disturbances, have been studied in detail. We have analysed the cosmic ray, geomagnetic and interplanetary plasma/field data to understand the physical mechanisms of two phenomena namely, Forbush decrease and geomagnetic storms, and to search for precursors to Forbush decrease (and geomagnetic storms) that can be used as a signature to forecast space weather. It is shown that the use of cosmic ray records has practical application for space weather predictions. Enhanced diurnal anisotropy and intensity deficit of cosmic rays have been identified as precursors to Forbush decreases in cosmic ray intensity. It is found that precursor to smaller (less than 5%) amplitude Forbush decrease due to weaker interplanetary shock is enhanced diurnal anisotropy. However, larger amplitude (greater than 5%) Forbush decrease due to stronger interplanetary shock shows loss cone type intensity deficit as precursor in ground based intensity record. These precursors can be used as inputs for space weather forecast.  相似文献   

6.
Abstract— Scanning electron microscopy of 137 Australasian microtektites and fragments from 4 sediment cores in the Central Indian Ocean reveals more than 2000 impact‐generated features in the size range of 0.3 to 600 μm. Three distinct impact types are recognized: destructive, erosive, and accretionery. A large variation in impact energy is seen in terms of catastrophic destruction demonstrated by fragmented microtektites through erosive impacts comprising glass‐lined pit craters, stylus pit craters, pitless craters, and a small number of accretionery features as well. The size range of observed microtektites is from 180 to 2320 μm, and not only are the smaller microtektites seen to have the largest number of impacts, but most of these impacts are also of the erosive category, indicating that target temperature is an important factor for retaining impact‐generated features. Further, microcratering due to collisions in impact‐generated plumes seems to exist on a larger and more violent scale than previously known. Although the microcraters are produced in a terrestrially generated impact plume, they resemble lunar microcraters in many ways: 1) the size range of impacts and crater morphology variation with increasing size; 2) dominant crater number densities in μm and sub‐μm sizes. Therefore, tektite‐producing impacts can lead to the generation of microcraters that mimic those found on lunar surface materials, and for the lunar rocks to qualify as reliable cosmic dust flux detectors, their tumbling histories and lunar surface orientations have to be known precisely.  相似文献   

7.
The Plio‐Pleistocene Upper Tamiami Formation (Pinecrest beds) of Florida is well known for its fossiliferous shell beds, but not for its extraterrestrial material. Here we report the first occurrence of tiny (~200 μm in diameter) silica‐rich microspherules from this unit and from the state. This material was analyzed using petrographic and elemental methods using energy dispersive X‐ray spectroscopy (EDS). The majority of microspherules are glassy and translucent in reflected light with some displaying “contact pairs” (equal‐sized micro‐spherules attached to each other). Broken microspherules cleave conchoidally, often with small internal spherical vesicles, but most lack any other evidence of internal features, such as layering. Using the EDS data, the microspherules were compared to volcanic rocks, microtektites, and cosmic spherules (micrometeorites). Based on their physical characteristics and elemental compositions these are likely microtektites or a closely related type of material. The high Na content in the examined material deviates significantly from the abundances usually found in micrometeorites and tektite material; this is enigmatic and requires further study. This material may be derived from a nearby previously unknown impact event; however, more material and sites are required to confirm the source of this material. Because of the focus on molluscan fossils in southwestern Florida shell beds, microtektite material has likely been overlooked in the past, and it is probable that these microspherules are in abundance elsewhere in these units and possibly throughout the region.  相似文献   

8.
Abstract— Orogenic deformation, both preceding and following the impact event at Sudbury, strongly hinders a straightforward assessment of impact‐induced geological processes that generated the Sudbury impact structure. Central to understanding these processes is the state of strain of the Sudbury Igneous Complex, the solidified impact melt sheet, its underlying target rocks, overlying impact breccias and post‐impact sedimentary rocks. This review addresses (1) major structural, metamorphic and magmatic characteristics of the impact melt sheet and associated dikes, (2) attempts that have been made to constrain the primary geometry of the igneous complex, (3) modes of impact‐induced deformation as well as (4) mechanisms of pre‐ and post‐impact orogenic deformation. The latter have important consequences for estimating parameters such as magnitude of structural uplift, tilting of pre‐impact (Huronian) strata and displacement on major discontinuities which, collectively, have not yet been considered in impact models. In this regard, a mechanism for the emplacement of Offset Dikes is suggested, that accounts for the geometry of the dikes and magmatic characteristics, as well as the occurrence of sulfides in the dikes. Moreover, re‐interpretation of published paleomagnetic data suggests that orogenic folding of the solidified melt sheet commenced shortly after the impact. Uncertainties still exist as to whether the Sudbury impact structure was a peak‐ring or a multi‐ring basin and the deformation mechanisms of rock flow during transient cavity formation and crater modification.  相似文献   

9.
The results of numerical simulations of the Eltanin impact are combined with the available geological data in order to reconstruct the impact dynamics and to get some constraints on the impact parameters. Numerical simulations show that the Eltanin projectile size should be less than 2 km for a 45° oblique impact and less than 1.5 km for a vertical impact. On the other hand, we demonstrate that the projectile diameter cannot be considerably smaller than 1 km; otherwise, the impact‐induced water flow cannot transport eroded sediments across large distances. The maximum displacement approximately equals the water crater radius and rapidly decreases with increasing distances. Numerical simulations also show that ejecta deposits strongly depend on impact angle and projectile size and, therefore, cannot be used for reliable estimates of the initial projectile mass. The initial amplitudes of tsunami‐like waves are estimated. The presence of clay‐rich sediments, typical for the abyssal basins in cores PS2709 and PS2708 on the Freeden Seamounts (Bellingshausen Sea, Southern Ocean) combined with numerical data allow us to suggest a probable point of impact to the east of the seamounts. The results do not exclude the possibility that a crater in the ocean bottom may exist, but such a structure has not been found yet.  相似文献   

10.
Abstract— The Ordovician Lockne impact structure is located in central Sweden. The target lithology consisted of limestone and black unconsolidated shale overlaying a Precambrian crystalline basement. The Precambrian basement is uranium‐rich, and the black shale is both uranium‐ and organic‐rich. This circumstance makes Lockne a good candidate for testing the occurrence of U‐Th‐rich bitumen nodules in an impact structure setting. U‐Th‐rich bitumen nodules are formed through irradiation; hence the increase in the complexity of organic matter by a radioactive (uranium‐ and thorium‐rich) mineral phase. U‐Th‐rich bitumen nodules were detected in crystalline impact breccia and resurge deposits from the impact structure, but samples of non‐impact‐affected rocks from outside the impact structure do not contain any U‐Th‐rich bitumen nodules. This implies that in the Lockne impact structure, the nodules are associated with impact‐related processes. U‐Th‐rich bitumen nodules occur throughout the geological record and are not restricted to an impact structure setting, but our studies at Lockne show that this process of irradiation can readily occur in impact structures where fracturing of rocks and a post‐impact hydrothermal system enhances fluid circulation. The irradiation of organic matter by radioactive minerals has previously been proposed as a process for concentration of carbon on the early Earth. Impact structures are suggested as sites for prebiotic chemistry and primitive evolution, and irradiation by radioactive minerals could be an important mechanism for carbon concentration at impact sites.  相似文献   

11.
The fundamental approach for the confirmation of any terrestrial meteorite impact structure is the identification of diagnostic shock metamorphic features, together with the physical and chemical characterization of impactites and target lithologies. However, for many of the approximately 200 confirmed impact structures known on Earth to date, multiple scale‐independent tell‐tale impact signatures have not been recorded. Especially some of the pre‐Paleozoic impact structures reported so far have yielded limited shock diagnostic evidence. The rocks of the Dhala structure in India, a deeply eroded Paleoproterozoic impact structure, exhibit a range of diagnostic shock features, and there is even evidence for traces of the impactor. This study provides a detailed look at shocked samples from the Dhala structure, and the shock metamorphic evidence recorded within them. It also includes a first report of shatter cones that form in the shock pressure range from ~2 to 30 GPa, data on feather features (FFs), crystallographic indexing of planar deformation features, first‐ever electron backscatter diffraction data for ballen quartz, and further analysis of shocked zircon. The discovery of FFs in quartz from a sample of the MCB‐10 drill core (497.50 m depth) provides a comparatively lower estimate of shock pressure (~7–10 GPa), whereas melting of a basement granitoid infers at least 50–60 GPa shock pressure. Thus, the Dhala impactites register a strongly heterogeneous shock pressure distribution between <2 and >60 GPa. The present comprehensive review of impact effects should lay to rest the nonimpact genesis of the Dhala structure proposed by some earlier workers from India.  相似文献   

12.
Abstract— The newly discovered Dhala structure, Madhya Pradesh State, India, is the eroded remnant of an impact structure with an estimated present‐day apparent diameter of about 11 km. It is located in the northwestern part of the Archean Bundelkhand craton. The pre‐impact country rocks are predominantly granitoids of ?2.5 Ga age, with minor 2.0–2.15 Ga mafic intrusive rocks, and they are overlain by post‐impact sediments of the presumably >1.7 Ga Vindhyan Supergroup. Thus, the age for this impact event is currently bracketed by these two sequences. The Dhala structure is asymmetrically disposed with respect to a central elevated area (CEA) of Vindhyan sediments. The CEA is surrounded by two prominent morphological rings comprising pre‐Vindhyan arenaceous‐argillaceous and partially rudaceous metasediments and monomict granitoid breccia, respectively. There are also scattered outcrops of impact melt breccia exposed towards the inner edge of the monomict breccia zone, occurring over a nearly 6 km long trend and with a maximum outcrop width of ?170 m. Many lithic and mineral clasts within the melt breccia exhibit diagnostic shock metamorphic features, including multiple sets of planar deformation features (PDFs) in quartz and feldspar, ballen‐textured quartz, occurrences of coesite, and feldspar with checkerboard texture. In addition, various thermal alteration textures have been found in clasts of initially superheated impact melt. The impact melt breccia also contains numerous fragments composed of partially devitrified impact melt that is mixed with unshocked as well as shock deformed quartz and feldspar clasts. The chemical compositions of the impact melt rock and the regionally occurring granitoids are similar. The Ir contents of various impact melt breccia samples are close to the detection limit (1–1.5 ppb) and do not provide evidence for the presence of a meteoritic component in the melt breccia. The presence of diagnostic shock features in mineral and lithic clasts in impact melt breccia confirm Dhala as an impact structure. At 11 km, Dhala is the largest impact structure currently known in the region between the Mediterranean and southeast Asia.  相似文献   

13.
A diagnostic geophysical‐based template, supported by modelling, is suggested to be used prior to, or in combination with geological/drilling data, when proposing a marine impact crater. The latter refers to impacts occurring in a marine setting and resulting in structures that are currently partially or totally underwater. The methodology is based on the well‐documented Mjølnir crater in the Barents Sea. The template has been developed in conjunction with the recently proposed and debated impact crater on the Malvinas (Falkland) Plateau in the South Atlantic. Despite their different sizes, their comparison adds to the ambiguous nature of the Malvinas structure and shows that the integrated analysis of seismic and potential field data and modelling is crucial for any interpretation of a marine impact crater without relevant geological information. The proposed workflow template utilizes all available geophysical data and is composed of a series of iterative steps, including a range of alternative nonimpact interpretations that must be discussed and accounted for. Subsequently, further iterative geophysical modelling is required to support and decipher the impact related processes. A more complex impact crater model and additional impact crater features can be resolved by physical property modelling. In all cases, a close spatial correspondence of the defined impact structure with potential field anomalies is a necessity to establish a causal relationship. We suggest that the diagnostic workflow template provides a methodology to be applied to future studies of the Malvinas structure, as well as to proposed marine (and, with minor adaptions, to nonmarine) impact craters in general.  相似文献   

14.
Abstract– The petrographic investigation of a shocked, chalcedony‐, quartzine‐, and quartz‐bearing allochthonous chert nodule (probably Upper Cretaceous) recovered from surficial wadi gravels in the inner parts of the central uplift of the approximately 6 km in diameter Jebel Waqf as Suwwan impact structure, Jordan, reveals new potential shock indicators in microfibrous–spherulitic silica, in addition to well‐established shock‐metamorphic effects in coarser crystalline quartz. The microcrystalline chert groundmass exhibits a macroscopic dendritic and suborthogonal fracture pattern commonly associated with thin “recrystallization bands” that intersect the pre‐existing diagenetic chert fabric. Fibrous aggregates of quartzine spherulites in chalcedony‐quartzine‐quartz veinlets locally have a shattered appearance and show conspicuous “curved fractures” perpendicular to the quartzine fiber direction (and parallel to [0001]) that commonly trend subparallel to planar fractures (PFs) in neighboring shocked quartz. Quartz exhibits PFs, feather features (FFs), and mainly single sets of planar deformation features (PDFs) parallel to the basal plane (0001) (Brazil twins) and, rarely, additional PDFs parallel to {101¯3}. Shock petrography indicates shock pressures of ≥10 GPa and high shock‐induced differential stresses that affected the chert nodule. The internal crosscutting relationships of primary diagenetic and impact‐related deformational features together with shockpressure estimates suggest that the curved fractures across quartzine spherulites might represent specific (low‐ to medium‐pressure) shock‐metamorphic features, possibly in structural analogy to basal plane PFs in quartz. The dendritic–suborthogonal fractures in the microcrystalline chert groundmass and recrystallization bands are likely related to impact‐induced shear deformation and recrystallization, respectively, and cannot be considered as definite shock indicators.  相似文献   

15.
The existence of the cosmic ray Halo in our Galaxy has been discussed for more than half a century. If it is real it could help to explain some puzzling features of the cosmic ray flux: its small radial gradient, nearly perfect isotropy and the low level of the fine structure in the energy spectra of the various particles. All these features could be understood if: (a) the Halo has a big size (b) cosmic rays in the Halo have a uniform spatial or radial distribution and (c) the cosmic ray density in the Halo is comparable or even higher than that in the Galactic Disk. The main topic of the paper concerns the present status of the anisotropy and a model for its formation. In our model the extremely small amplitude of the dipole anisotropy is due to the dilution of the anisotropy in the Disk by the dominating isotropic cosmic rays from the Halo. Some minor deviations from complete isotropy in the sub-PeV and PeV energy regions point out to the possible contribution of the Single Source with the phase of its first harmonic opposite to the phase produced by the Disk.  相似文献   

16.
Micrometeorites that pass through the Earth's atmosphere undergo changes in their chemical compositions, thereby making it difficult to understand if they are sourced from the matrix, chondrules, or calcium–aluminum‐rich inclusions (CAIs). These components have the potential to provide evidence toward the understanding of the early solar nebular evolution. The variations in the major element and trace element compositions of 155 different type (scoriaceous, relict bearing, porphyritic, barred, cryptocrystalline, and glass) of S‐type cosmic spherules are investigated with the intent to decipher the parent sources using electron microprobe and laser ablation inductively coupled plasma‐mass spectrometry. The S‐type cosmic spherules appear to show a systematic depletion in volatile element contents, but have preserved their refractory trace elements. The trends in their chemical compositions suggest that the S‐type spherules comprise of components from similar parent bodies, that is, carbonaceous chondrites. Large fosteritic relict grains observed in this investigation appear to be related to the fragments of chondrules from carbonaceous chondrites. Furthermore, four spherules (two of these spherules enclose spinels and one comprised entirely of a Ca‐Al‐rich plagioclase) show enhanced trace element enrichment patterns that are drastically different from all the other 151 cosmic spherules. The information on the chemical composition and rare earth elements (REEs) on cosmic spherules suggest that the partially to fully melted ones can preserve evidences related to their parent bodies. The Ce, Eu, and Tm anomalies found in the cosmic spherules have similar behavior as that of chondrites. Distinct correlations observed between different REEs and types of cosmic spherules reflect the inherited properties of the precursors.  相似文献   

17.
The Flynn Creek impact structure is an approximately 3.8 km diameter, marine‐target impact structure, which is located in north central Tennessee, USA. The target stratigraphy consists of several hundreds of meters of Ordovician carbonate strata, specifically Knox Group through Catheys‐Leipers Formation. Like other, similarly sized marine‐target impact craters, Flynn Creek's crater moat‐filling deposits include, in stratigraphic order, gravity‐driven slump material, aqueous resurge deposits, and secular (postimpact) aqueous settling deposits. In the present study, we show that Flynn Creek also possesses previously undescribed erosional resurge gullies and an annular, sloping surface that comprises an outer crater rim surrounding an inner, nested bowl‐shaped crater, thus forming a concentric crater structure. Considering this morphology, the Flynn Creek impact structure has a crater shape that has been referred to at other craters as an “inverted sombrero.” In this paper, we describe the annular rim and the inner crater at Flynn Creek using geographic information system technology. We relate these geomorphic features to the marine environment of crater formation, and compare the Flynn Creek impact structure with other marine‐target impact structures having similar features.  相似文献   

18.
Abstract– We have performed forward magnetic and gravity modeling of data obtained during the 2007 expedition to the 3.7 km in diameter, circular, Tsenkher structure, Mongolia, in order to evaluate the cause of its formation. Extensive occurrences of brecciated rocks, mainly in the form of an ejecta blanket outside the elevated rim of the structure, support an explosive origin (e.g., cosmic impact, explosive volcanism). The host rocks in the area are mainly weakly magnetic, silica‐rich sandstones, and siltstones. A near absence of surface exposures of volcanic rocks makes any major volcanic structures (e.g., caldera) unlikely. Likewise, the magnetic models exclude any large, subsurface, intrusive body. This is supported by an 8 mGal gravity low over the structure indicating a subsurface low density body. Instead, the best fit is achieved for a bowl‐shaped structure with a slight central rise as expected for an impact crater of this size in mainly sedimentary target. The structure can be either root‐less (i.e., impact crater) or rooted with a narrow feeder dyke with relatively higher magnetic susceptibility and density (i.e., volcanic maar crater). The geophysical signature, the solitary appearance, the predominantly sedimentary setting, and the comparably large size of the Tsenkher structure favor the impact crater alternative. However, until mineralogical/geochemical evidence for an impact is presented, the maar alternative remains plausible although exceptional as it would make the Tsenkher structure one of the largest in the world in an unusual setting for maar craters.  相似文献   

19.
Abstract— Impact structures developed on active terrestrial planets (Earth and Venus) are susceptible to pre‐impact tectonic influences on their formation. This means that we cannot expect them to conform to ideal cratering models, which are commonly based on the response of a homogeneous target devoid of pre‐existing flaws. In the case of the 1.85 Ga Sudbury impact structure of Ontario, Canada, considerable influence has been exerted on modification stage processes by late Archean to early Proterozoic basement faults. Two trends are dominant: 1) the NNW‐striking Onaping Fault System, which is parallel to the 2.47 Ga Matachewan dyke swarm, and 2) the ENE‐striking Murray Fault System, which acted as a major Paleoproterozoic suture zone that contributed to the development of the Huronian sedimentary basin between 2.45–2.2 Ga. Sudbury has also been affected by syn‐ to post‐impact regional deformation and metamorphism: the 1.9–1.8 Ga Penokean orogeny, which involved NNW‐directed reverse faulting, uplift, and transpression at mainly greenschist facies grade, and the 1.16–0.99 Ga Grenville orogeny, which overprinted the SE sector of the impact structure to yield a polydeformed upper amphibolite facies terrain. The pre‐, syn‐, and post‐impact tectonics of the region have rendered the Sudbury structure a complicated feature. Careful reconstruction is required before its original morphometry can be established. This is likely to be true for many impact structures developed on active terrestrial planets. Based on extensive field work, combined with remote sensing and geophysical data, four ring systems have been identified at Sudbury. The inner three rings broadly correlate with pseudotachylyte (friction melt) ‐rich fault systems. The first ring has a diameter of ?90 km and defines what is interpreted to be the remains of the central uplift. The second ring delimits the collapsed transient cavity diameter at ?130 km and broadly corresponds to the original melt sheet diameter. The third ring has a diameter of ?180 km. The fourth ring defines the suggested apparent crater diameter at ?260 km. This approximates the final rim diameter, given that erosion in the North Range is <6 km and the ring faults are steeply dipping. Impact damage beyond Ring 4 may occur, but has not yet been identified in the field. One or more rings within the central uplift (Ring 1) may also exist. This form and concentric structure indicates that Sudbury is a peak ring or, more probably, a multi‐ring basin. These parameters provide the foundation for modeling the formation of this relatively large terrestrial impact structure.  相似文献   

20.
A serious difficulty with the standard alpha‐omega theory of the origin of galactic magnetic fields involves the question of flux expulsion. This is intimately related to flux freezing. The alpha‐omega theory is shown in the context of the giant superbubble explosions that have a large impact on the physics of the interstellar medium. It is shown that superbubbles alone can duplicate the processes of the alpha‐omega dynamo and produce exponential growth of the galactic magnetic field. The possibility of the blow‐out of pieces of the magnetic field is discussed and it is shown that they have the potential to solve the flux‐expulsion problem. However, such an explanation must lead to apparent ‘gaps’ in the field in the galactic disc. These gaps are probably unavoidable in any dynamo theory and should have important observable consequences, one of which is an explanation for the escape of cosmic rays from the disc (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号