首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高温流体的化学组成及同位素特征是深部环境信息的重要载体.本文基于锂同位素地球化学方法系统分析了川西现代热泉地热流体的水化学特征、水岩反应过程、补给来源、水岩反应温度及循环深度.研究结果显示,茶洛热泉水化学相类型为HCO3-Na型,与地表水和冷地下水的HCO3-Ca型存在明显区别.利用锂同位素温标估算茶洛热泉的水岩反应体...  相似文献   

2.
The Middle Awash basin is an arid region in Ethiopia where surface waters are scarce and local communities are dependent on groundwater resources for water supply. The complex hydrogeological system of this basin has been conceptualized. Multivariate statistical analysis of hydrochemical variables and water isotopes were used to study the rock?Cwater interaction, geochemical reaction processes and the hydrological link between aquifers. Groundwaters from aquifers of the high-rainfall plateau bounding the rift are slightly mineralized, as well as depleted in ??18O and ??D, and contain 3H above 0.8?TU. This suggests a low degree of rock?Cwater interaction and that groundwater is under recharge from heavy rain that falls on surrounding highlands. On the other hand, groundwaters from aquifers of the rift floor are highly mineralized and show slight enrichment in ??18O and ??D with positive oxygen shift, but contain 3H below 0.8?TU. The positive oxygen shift in rift floor groundwaters may be caused by the isotopic exchange of oxygen between groundwater and aquifer materials during rock?Cwater interaction, whereas the low 3H content could be due to the decay of tritium along relatively long flow paths. The approach utilized in this study may be applicable to understanding hydrogeochemical processes in other complex volcanic terrains.  相似文献   

3.
Occurrence of fluoride (F) in groundwater has drawn worldwide attention, since it has considerable impact on human health. In Ethiopia high concentrations of F in groundwaters used for community water supply have resulted in extensive dental and skeletal fluorosis. As a part of a broader study, the distribution of F in groundwater has been investigated, and compared with bedrock geology and pertinent hydrochemical variables. The result indicates extreme spatial variations. High F concentration is often associated with active and sub-active regional thermal fields and acidic volcanics within high temperature rift floor. Variations in F can also be related to changes in calcium concentration resulting from dissolution of calcium minerals and mixing with waters of different chemical composition originated from variable hydrogeological environment across the rift valley. The concentration of F dramatically declines from the rift towards the highlands with the exception of scattered points associated with thermal springs confined in local volcanic centers. There are also interactions of F-rich alkaline lakes and the surrounding groundwater. Meteoric waters recharging volcanic aquifers become enriched with respect to F along the groundwater flow path from highland recharge areas to rift discharge areas. Locally wells drilled along large rift faults acting as conduits of fresh highland waters show relatively lower F. These areas are likely to be possible sources of better quality waters within the rift. The result of this study has important implications on site selection for water well drilling.  相似文献   

4.
Three types of groundwater occur in the area of the Ranger mine. Type A groundwater occurs in the loose sands and gravels occupying the present day stream channels, Type B in the weathering profile and Type C occurs in relatively fresh fractured bedrock occupying open fractures and other cavities. The three types of groundwater can be distinguished both chemically and isotopically. Light stable isotope data suggest that most early rains are lost by evapotranspiration and have no imprint on the groundwater. Later in the wet season, the ground is saturated and groundwater recharge occurs on a regional scale. This younger groundwater sits on the older waters. Mixing is probably minimal as before any large scale mixing could occur, most younger waters are lost by evapotranspiration. Stable isotope data suggest that Type B groundwater in certain areas has some connection with evaporated surface water bodies. Stable isotope measurements for the pollution monitoring bores around the tailings dam do not indicate any connection with the polluted pond waters at the time of sample collection.  相似文献   

5.
The major ion hydrochemistry, sodium absorption ratio (SAR), sodium percentage, and isotopic signatures of Hammamet-Nabeul groundwaters were used to identify the processes that control the mineralization, irrigation suitability, and origin of different water bodies. This investigation highlights that groundwater mineralization is mainly influenced by water-rock interaction and pollution by the return flow of irrigation water. The comparison of groundwater quality with irrigation suitability standards proves that most parts of groundwater are unacceptable for irrigation and this long-term practice may result in a significant increase of the salinity and alkalinity in the soils. Based on isotopic signatures, the shallow aquifer groundwater samples were classified into (i) waters with depleted δ18O and δ2H contents, highlighting recharge by modern precipitation, and (ii) waters with enriched stable isotope contents, reflecting the significance of recharge by contaminated water derived from the return flow of evaporated irrigation waters. The deep-aquifer groundwater samples were also classified into (i) waters with relatively enriched isotope contents derived from modern recharge and mixed with shallow-aquifer groundwater and (ii) waters with depleted stable isotope contents reflecting a paleoclimatic origin. Tritium data permit to identify three origins of recharge, i.e., contemporaneous, post-nuclear, and pre-nuclear. Carbon-14 activities demonstrate the existence of old paleoclimatic recharge related to the Holocene and Late Pleistocene humid periods.  相似文献   

6.
Interaction between surface water represented by the Euphrates River, natural springs, and Sawa Lake with groundwater (11 wells) in southern Iraq was investigated in this study. Water samples were collected for hydrochemistry and stable isotope (2H and 18O) analysis. Sampling of water from determined stations (10 stations along the Euphrates, 3 springs, and Sawa Lake) were carried out during two stages; the first was in October 2013(dry season) and the second one was in March 2014 (wet season). The aim of the research is to assess the interaction of groundwater–surface water, which includes Al-Atshan River (branch of the Euphrates River), Sawa Lake, and the groundwater in the study area by using hydrochemistry and stable isotope techniques. The results indicate that surface waters have a different type of water from that of groundwater. In δ 2H and δ 18O diagrams, all groundwater, springs, and Sawa Lake waters are plotted below the Global Meteoric Water Line (GMWL) and the local meteoric water line (LMWL) indicating the influence of evaporation processes and seasonal variation. The LMWL deviates by a d-excess about +13.71 toward the East Mediterranean meteoric water line (EMWL) indicating that the origin of the vapor source is the Mediterranean Sea. The river water has different isotopic compositions from that of groundwater, springs, and Sawa Lake. The final conclusion is that there is no clear influence of the groundwater on the river water while there is an intermixing between the groundwater in the different locations in the study area.  相似文献   

7.
The implementation of laws relating to transboundary aquifers necessitates field knowledge so that the laws can be coincident with reality on the ground. The definition of ‘shared aquifer’ is more complex than the mere physically shared body of groundwater flowing from country A to country B. The border between Ethiopia and Kenya is characterized by low-volume groundwater storage and low transboundary flows. However, groundwater has visible environmental, social and economic functions. The characteristics of groundwater flow and storage in aquifers shared between Ethiopia and Kenya are different from those used in setting the foundation of the international legal framework on shared aquifers. By describing the characteristics of the groundwaters that are shared between Ethiopia and Kenya, this work demonstrates that the international legal framework is inadequate when applied in this region. The main inadequacies are: (1) international law does not specify the minimum volume of transboundary flow in an aquifer for it to qualify to be treated under the law, and (2) the physical aspects of water get more emphasis than the functions of groundwater. A more adequate international legal framework would be one that considers specific types of groundwater and local needs.  相似文献   

8.
The southwestern Chad basin is a semi-arid region with annual rainfall that is generally less than 500 mm and over 2,000 mm of evapotranspiration. Surface water in rivers is seasonal, and therefore groundwater is the perennial source of water supply for domestic and other purposes. Stable isotope has been measured for rainwater, surface water and groundwater samples in this region. The stable isotope data have been used to understand the inter-relationships between the rainwater, surface water, shallow and deep groundwater of this region. This is being used in a qualitative sense to demonstrate present day recharge to the groundwater. Stable isotope in rainwater for the region has an average value of –4‰ δ18O and –20‰ δ2H. Surface water samples from rivers and Lake Chad fall on the evaporation line of this average value. The Upper Zone aquifer water samples show stable isotope signal with a wide range of values indicating the complex character of the aquifer Zone with three distinguishable units. The wide range of values is attributable to waters from individual unit and/or mixture of waters of different units. The Middle and Lower aquifers Zones’ waters show similar stable isotopes values, probably indicating similarity in timing and/or mechanism of recharge. These are palaeowaters probably recharged under a climate that is different from today. The Upper Zone aquifer is presently being recharged as some of its waters show stable isotope compositions similar to those of average rainfall waters of the region.  相似文献   

9.
The Yakima River, a major tributary of the Columbia River, is currently overallocated in its surface water usage in part because of large agricultural water use. As a result, groundwater availability and surface water/groundwater interactions have become an important issue in this area. In several sub-basins, the Yakima River water is diverted and applied liberally to fields in the summer creating artificial recharge of shallow groundwater. Major ion, trace element, and stable isotope geochemistry of samples from 26 groundwater wells from a transect across the Yakima River and 24 surface waters in the Kittitas sub-basin were used to delineate waters with similar geochemical signatures and to identify surface water influence on groundwater. Major ion chemistry and stable isotope signatures combined with principal component analysis revealed four major hydrochemical groups. One of these groups, collected from shallow wells within the sedimentary basin fill, displays temporal variations in NO3 and SO4 along with high δ18O and δD values, indicating significant contribution from Yakima River and/or irrigation water. Two other major hydrochemical groups reflect interaction with the main aquifer lithologies in the basin: the Columbia River basalts (high-Na groundwaters), and the volcaniclastic rocks of the Ellensburg Formation (Ca–Mg–HCO3 type waters). The fourth major group has interacted with the volcaniclastic rocks and is influenced to a lesser degree by surface waters. The geochemical groupings constrain a conceptual model for groundwater flow that includes movement of water between underlying Columbia River basalt and deeper sedimentary basin fill and seasonal input of irrigation water.  相似文献   

10.
The report discusses the stable isotope values and major solute compositions of 16 springs and river-water samples along a topographic gradient in the main rift valley of southern Ethiopia. Most of the springs used for drinking water supplies discharge from local flow systems at scales of only tens of meters. The δ18O and δD values of waters unaffected by shallow evaporation form a local meteoric water line of δD=8.1δ18O+19.0, almost identical to that for the eastern Mediterranean area. The δ18O values show an altitude effect of –0.5‰ per 100-m elevation rise. Total dissolved nitrogen concentrations locally exceed 6 mg/L (as N), and phosphate concentrations were elevated above background levels in some springs, exceeding 0.2 mg/L PO4, probably due to agricultural practices upgradient of the springs. Modest well-head protection should be considered to protect public health from the effects of pollution by agricultural waste, given the very local scale of the flow systems providing spring water to Ethiopian villages. Electronic Publication  相似文献   

11.
焦杏春 《地质学报》2016,90(9):2476-2489
地下水系统是包含地质环境、地下水动力、地下水化学等子集的综合系统,早在2000年前的古罗马时代,人们就已应用水文地球化学方法开展地下水的水化学特征、地下水补给、径流与排泄等研究。近现代同位素技术的发展,为开展地下水补给和可更新性、追踪地下水污染等方面的研究,提供了极大帮助。研究者通过分析地下水样品的水文地球化学指标,如K~+、Ca~(2+)、Na~+、Mg~(2+)等离子,结合δ18 O、δD、δ37 Cl、δ81 Br等稳定同位素指标,在地下水径流特征分析、水岩相互作用过程、地下水咸化、地下水资源管理以及地下水水质问题等研究方面取得了大量成果。本文概述了国内外近年来应用水文地球化学与同位素结合的手段进行地下水系统研究取得的成果及进展,着重回顾了在地下水咸化、地下水硝酸盐及微量有机污染以及地下水资源管理研究中的应用成果。文末讨论了应用水文地球化学与同位素结合的手段研究地下水系统的基本方法,探讨了开展地下水质质量评价与地下水资源管理的科学方法,展望了水文地球化学与同位素方法在地下水有机污染调查研究中的应用前景,认为该方法可以为地下水中新型及持久性有机污染物的来源及污染特征研究提供重要支撑。  相似文献   

12.
松嫩平原地下水流动模式的环境同位素标记   总被引:2,自引:0,他引:2  
陈宗宇  刘君  杨湘奎  陈江  王莹  卫文 《地学前缘》2010,17(6):94-101
采用同位素水文学方法并结合传统水文地质方法,识别松嫩平原地下水流动模式。氢氧稳定同位素和地下水年龄分布表明该区地下水流动系统流动模式呈现出局部流、中间流和区域流系统。地下水中氚分布深度指示局部水流系统为现代水循环系统,以垂向运动为主要特征,循环深度一般小于50 m,山前区可达100m以下;区域流系统存在于深部承压含水层,以侧向水平径流为主要运动特征。松辽边界附近的环境同位素特征存在明显的差别,指示天然状态下可视为零通量边界。同位素示踪剂也反映出嫩江和地下水的相互作用关系,在齐齐哈尔以北,江水补给地下水;在齐齐哈尔以南,地下水向嫩江排泄。  相似文献   

13.
矿床地球化学应用   总被引:37,自引:13,他引:37  
郑永飞 《矿床地质》2001,20(1):57-70,85
稳定同位素方法已成为现代地球科学研究的重要手段之一,稳定同位素体系的理论模式及其地球化学应用是国际上地球化学研究的前沿方向之一。本文概括了热液体系内成矿地球化学过程引起稳定同位素组成变化的定量理论模式,包括热液矿物之间的同位素平衡的判断、热液去气和矿物沉淀的储库效应、二元混合与矿床成因等。这些模型对于确定成矿温度、鉴定成矿流体源区和推测成矿地球化学机理提供了更为合理的同位素数据定量解释基础。  相似文献   

14.
Groundwater in the Cambrian–Vendian aquifer system has a strongly depleted stable isotope composition (δ18O values of about −22‰) and a low radiocarbon concentration, which suggests that the water is of glacial origin from the last Ice Age. The aim of this paper was to elucidate the timing of infiltration of glacial waters and to understand the geochemical evolution of this groundwater. The composition of the dissolved inorganic C (DIC) in Cambrian–Vendian groundwater is influenced by complex reactions and isotope exchange processes between water, organic materials and rock matrix. The δ13C composition of dissolved inorganic C in Cambrian–Vendian water also indicates a bacterial modification of the isotope system. The corrected radiocarbon ages of groundwater are between 14,000 and 27,000 radiocarbon years, which is coeval with the advance of the Weichselian Glacier in the area.  相似文献   

15.
The disruption of lithologies by cross-cutting faults and the variability in volcanic structures make the hydrogeology of the rifted volcanic terrain in Ethiopia very complex. Along two transects, selected due to their hydrogeologic characteristics, groundwater flow, depth of circulation and geochemical evolution have been conceptualized. The groundwater flow continuity between the high rainfall plateau bounding the rift and the rift valley aquifers depends principally on the nature of the bounding faults. Up to 50% of recharge to the rift aquifers comes from the plateau as groundwater inflow where the rift is cross cut by transverse fault zones. Recharge from the mountains is found to be insignificant where the rift is bounded by marginal grabens; channel loss and local precipitation are the principal sources of recharge to the rift aquifers in such cases. At a regional scale, there is a clear zonation in the geochemical compositions of groundwaters, the result of aquifer matrix composition differences. The environmental isotope results show that the majority of the aquifers contain modern groundwaters. In a few localities, particularly in thermal groundwaters representing deeper circulation, palaeo-groundwaters have been identified. Deeper groundwaters in the rift floor have a uniform 14C age ranging between 2,300 and 3,000 years.  相似文献   

16.
根据焉耆盆地开都河水及其两岸地下水中的氢氧稳定同位素资料及氘过量参数(d)值,分析了焉耆盆地内不同水体的δ(D)、δ(18O)和d值的分布规律,并得到地下水的主要补给来源及其与开都河水的相互作用关系;地下水的δ(D)在-87.60‰~-61.82‰间,δ(18O)在-10.90‰~-9.73‰间;开都河水的δ(D)在-71.95‰~-58.58‰间,δ(18O)在-9.57‰~-8.64‰间。结果表明:焉耆盆地内地下水和地表水同源于山区的降水和冰雪融水,且经历了较强的蒸发作用;地下水与地表水之间的直接水力联系较弱,深层地下水主要接受开都河水在洪积扇区的入渗补给,浅层地下水主要接受河流引水灌溉入渗;不同深度地下水之间的水力联系较为密切,为统一的地下水系统。  相似文献   

17.
河流与地下水相互作用研究是水文学研究的难点和热点。安阳河与地下水相互作用研究,对于安阳市水资源科学开发与管理具有重要意义。安阳河冲洪积扇地表水与地下水转化率为17%~27%。潜水位标高为80 m,向下游逐渐变成多层含水层(水位40 m)。当地降水环境同位素监测数据表明,当地大气降水线与全球大气降水线接近平行,表明该线代表本地区大气降水的氢氧同位素特征。地表水同位素值较集中,2016年8月δ18O值变化范围为-9‰~-8.7‰,δD值变化范围为-65‰~-63‰,2017年1月δ18O值变化范围为-8.5‰~-8.2‰,δD值变化范围为-63‰~-61‰,河水水化学类型为HCO3·SO4—Ca型,表明流域内地表水的同位素值受距离的影响较小。地下水稳定同位素值变化较大,2016年8月δ18O值范围为-10.4‰~-5.5‰,δD值范围为-75‰~-46‰,2017年1月δ18O值范围为-10.2‰~-5.4‰,δD值范围为-75‰~-45‰,即从接近降水值到最大值形成一条“蒸发”线。河流出山口一带地下水同位素值呈现最大蒸发值,表明地表水补给地下水,地下水化学类型为HCO3·SO4·Cl—Ca,存在明显人为污染成分。下游为大气降水补给浅层地下水,中深层地下水主要来源于中游侧向径流,水化学类型主要为HCO3—Ca·Mg型,综合分析表明,安阳河中下游(冲洪积扇)地带“三水”转换积极,并影响其水质、水量。  相似文献   

18.
To understand deep groundwater flow systems and their interaction with CO2 emanated from magma at depth in a volcanic edifice, deep groundwater samples were collected from hot spring wells in the Aso volcanic area for hydrogen, oxygen and carbon isotope analyses and measurements of the stable carbon isotope ratios and concentrations of dissolved inorganic carbon (DIC). Relations between the stable carbon isotope ratio (δ13CDIC) and DIC concentrations of the sampled waters show that magma-derived CO2 mixed into the deep groundwater. Furthermore, groundwaters of deeper areas, except samples from fumarolic areas, show higher δ13CDIC values. The waters' stable hydrogen and oxygen isotope ratios (δD and δ18O) reflect the meteoric-water origin of that region's deep groundwater. A negative correlation was found between the altitude of the well bottom and the altitude of groundwater recharge as calculated using the equation of the recharge-water line and δD value. This applies especially in the Aso-dani area, where deeper groundwater correlates with higher recharge. Groundwater recharged at high altitude has higher δ13CDIC of than groundwater recharged at low altitude, strongly suggesting that magmatic CO2 is present to a much greater degree in deeper groundwater. These results indicate that magmatic CO2 mixes into deeper groundwater flowing nearer the magma conduit or chamber.  相似文献   

19.
Hydrogen and oxygen stable isotope in water bodies is a widely used tracer in hydrological process studies. In order to provide a basis for stable isotopic characteristics in different water bodies at the high mountainous area of northwestern Tibetan Plateau, samples for river water, groundwater, soil water, and plant water were collected from 10 sites in the Qilian Mountains during July and August 2015, and then analyzed for δ18O and δD, respectively. Results indicated that the stable isotope values of soil water were mostly plotted below the global meteoric water line (GMWL), which suggested that evaporation made heavy isotope in soil water enriched. The stable isotope values of soil water were quite different in the top soil layer, but tended to be uniform in the deep soil layer. Furthermore, the stable isotope difference of plant water is related to climatic conditions, water isotopes utilized by plant, plant species, growing season, and so on. Additionally, the variation of δ18O values for river water and groundwater relatively coincided with each other, and this showed the recharge sources of above two water bodies may be consistent. The stable isotope values of river water and groundwater were mainly plotted on the upper left of GMWL, and the lower level of isotopic fractionation due to weak evaporation may accountable for this.  相似文献   

20.
西昌市尔乌泉域泉水水文地球化学特征及成因   总被引:2,自引:2,他引:0       下载免费PDF全文
泉和泉群是川西南乡村居民首要的生活水源,对本区泉水水文地球化学特征及成因的研究具有重要的科学价值和指导意义。以尔乌泉域泉水和地表水为研究对象,通过分析泉水和地表水常规水化学组分、氢氧同位素和氚同位素,探讨了该泉域泉水水文地球化学特征及成因。结果显示:尔乌泉域泉水为中偏碱性低矿化水,其水化学类型为HCO3—Ca·Mg和HCO3·SO4—Ca·Mg型水。地表水因受泉水补给影响具有与泉水相似的组分特征。氢氧同位素分析显示尔乌泉水和地表水补给来源为大气降水,且未发生氧同位素漂移。氚同位素进一步确定泉水为非现代水,地下水经历较长的径流时间。受断裂带和褶皱构造的影响,入渗补给的大气降水与碎屑岩中碳酸盐岩、石膏等矿物发生水岩相互作用,后与第四系黏土物质发生阳离子交换反应,致使泉水水化学组分以Ca2+、Mg2+、HCO-3和SO2-4为主。此外,居民生活污水的排放和化学肥料的施用也对泉水中Na+和SO2-4组分产生影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号