共查询到20条相似文献,搜索用时 31 毫秒
1.
Jobin Thomas Sabu Joseph K. P. Thrivikramji T. M. Manjusree K. S. Arunkumar 《Environmental Earth Sciences》2014,71(5):2333-2351
A comprehensive and systematic study to understand various geochemical processes as well as process drivers controlling the water quality and patterns of the hydrochemical composition of river water in Muthirapuzha River Basin, MRB (a major tributary of Periyar, the longest river in Kerala, India), was carried out during various seasons, such as monsoon, post-monsoon and pre-monsoon of 2007–2008, based on the data collected at 15 monitoring stations (i.e., 15 × 3 = 45 samples). Ca2+ and Mg2+ dominate the cations, while Cl? followed by HCO3 ? dominates the anions. In general, major ion chemistry of MRB is jointly controlled by weathering of silicate and carbonate rocks, which is confirmed by relatively larger Ca2+ + Mg2+/Na+ + K+ ratios as well as Ca2+/Na+ vs. Mg2+/Na+ and Ca2+/Na+ vs. HCO3 ?/Na+ scatter plots. The relationship between Cl? and Na+ implies stronger contributions of anthropogenic activities modifying the hydrochemical composition, irrespective of seasons. The water types emerged from this study are transitional waters or waters that changed their chemical character by mixing with waters of geochemically different ionic signatures. However, various ionic ratios, hydrochemical plots and graphical diagrams suggest seasonality over the hydrochemical composition, which is solely controlled by the rainfall pattern. Relatively higher pCO2 indicates the disequilibrium existing in natural waterbodies vis-à-vis the atmosphere, which is an outcome of both the contribution of groundwater to stream discharge and anthropogenic activities. Hence, continuous monitoring of hydrochemical composition of mountain rivers is essential in the context of climate change, which has serious implications on tropical mountain fluvial-hydro systems. 相似文献
2.
Spatio-temporal variation of stable isotopes in precipitation in the Heihe River Basin,Northwestern China 总被引:9,自引:3,他引:6
An intensive investigation of the spatial and temporal variations of δD and δ
18O in precipitation was conducted during 2002–2004 in six sites in the Heihe River Basin, Northwestern China. The δD and δ
18O values for 301 precipitation samples ranged from +59 to −254 and +6.5 to −33.4‰, respectively. The relationship between
δD and δ
18O defines a well-constrained line given by
dD = 7.82d18\textO + 7.63 \delta D = 7.82\delta {}^{18}{\text{O}} + 7.63 , which is nearly identical to the meteoric water line in the Northern China. This wide range indicates that stable isotopes
in precipitation were primarily controlled by different condensation mechanisms as a function of air temperature and varying
sources of moisture. The results of backward trajectory of each precipitation day at Xishui show that the moisture of the
precipitation in cold season (October–March) mainly originated from the west while the moisture source was more complicated
in warm season (April–September). The simulation of seasonal δ
18O variation shows that the stable isotope composition of precipitation tended to a clear sine-wave seasonal variation. The
spatial variation of δ
18O shows that the weighted average δ
18O values decreases with the increasing altitude of sampling sites. The great difference of air temperature which led to the
differences of condensation mechanisms and local recycled continental moisture may have influence upon the isotopic composition
of rain events in different sites. 相似文献
3.
洞庭湖湖区降水-地表水-地下水同位素特征 总被引:8,自引:0,他引:8
为探明洞庭湖湖区水体稳定同位素时间和空间上的变化规律,弄清各水体间的相互关系,分别在2012年4月和8月对区域内具有代表性的采样点进行了地表水和地下水的采样。通过对样品进行D、18O同位素分析,结合全球大气降水同位素监测网(GNIP)公布的1988—1992年间长沙降水同位素数据,发现湖区年内受不同盛行风影响,降水及地表水的同位素存在较大的季节性差异,4月份同位素富集,8月份贫化。此外,河水、湖水同位素也呈现明显的空间差异。两个时期地表水的水线斜率均小于当地降水线,地表水在两个时期均存在蒸发作用。虽然地表水和地下水的来源均为大气降水,但与地表水相比,地下水同位素季节变化较小,地下水接受地表水补给是一个较为长期的过程。 相似文献
4.
B. Ajay Kumar Girish Gopinath M. S. Shylesh Chandran 《Arabian Journal of Geosciences》2014,7(5):1763-1772
The variability in ground water potential at different regions of the Meenachil River basin and the remarkable distribution of palaeodeposit of sand at its middle to lower reaches have led to interpret the sinuosity indexes of the main channel as well as the tributaries of the River for elucidating the relationship between mathematical expressions and filed observations. The measurement of digital elevation model-derived river sinuosity was carried out for 846 km2 of the basin area of Meenachil River. The drainage networks of 10 major sub-watersheds and four mini-watersheds were delineated using remote sensing data—geocoded false colour composite of Indian Remote Sensing satellite (IRS)-1D (LISS III) data with a spatial resolution of 23.5 m—coupled with the Survey of India toposheets (1:50,000). The calculation of the sinuosity indexes were carried out using Arc GIS (8.3 version) software. Hydraulic sinuosity indexes, topographic sinuosity index and standard sinuosity index were calculated. The study depicts the remarkable correlation between theoretical data sets with field observations and the influence of tectonic control on river planforms. Three structurally controlled regions of Meenachil River basin were established using Remote Sensing and Geographical Information System. 相似文献
5.
Stable isotope composition of precipitation from Pamba River basin, Kerala, India, is evaluated to understand the role of spatial and temporal variations on rainwater isotope characteristics. Physiographically different locations in the basin showed strong spatial and temporal variations. δ 18O varied from ?7.63 to ?1.75 ‰ in the lowlands; from ?9.32 to ?1.94 ‰ in the midlands and from ?11.6 to ?4.00 ‰ in the highlands. Local Meteoric Water Lines (LMWL) for the three regions were determined separately and an overall LMWL for the whole of the basin was found to be δ 2H = 6.6 (±0.4) δ 18 O+10.4 (±2.0). Altitude effect was evident for the basin (0.1 ‰ for δ 18O and 0.8 ‰ for δ 2H per 100 m elevation), while the amount effect was weak. The precipitation formed from the marine moisture supplied at a steady rate, without much isotopic evolution in this period may have masked the possible depletion of heavier isotopes with increasing rainfall. Consistently high d-excess values showed the influence of recycled vapour, despite the prevailing high relative humidity. The oceanic and continental vapour source origins for the south-west and north-east monsoons were clearly noted in the precipitation in the basin. Rayleigh distillation model showed about 30% rainout of the monsoon vapour mass in the basin. 相似文献
6.
为了进一步全面理解和探索青藏高原水文水循环过程,采用同位素方法并结合气象资料对青藏高原北麓河区域2011年6~12月降水和河水稳定同位素时空特征进行分析。探讨了北麓河降水同位素与日平均气温、降水量之间的相互关系,同时也对比分析了北麓河降水和河水的同位素变化特征。结果表明:北麓河降水同位素在整个观测期内总体受温度控制,但存在季节变化,其中6~9月降水同位素受到温度和降水量效应的共同控制,9月以后则主要受温度的影响。河水同位素与降水同位素相似的变化特征,体现了降水补给特征,另外降水量也能够影响河水同位素变化:降水量小则降水对其影响较小,反之则大。与北麓河降水线相比,河水δ18O~δD关系的斜率和截距偏大,揭示该区域河水除了受大气降水的补给外,还受到区域水体内循环和蒸发分馏作用的影响。 相似文献
7.
Arun Bhadran V. K. Vijesh Girish Gopinath Drishya Girishbai N. P. Jesiya K. P. Thrivikramji 《Arabian Journal of Geosciences》2018,11(15):430
An integrated morphometric and hypsometric analysis coupled with asymmetric factor used as a proxy for the landscape evolution of the catchment of Karuvannur River. The present study area is a sixth order tropical river in the central Kerala which supplies water and sediments to the Vembanad-Kol Ramsar site. The Karuvannur River Basin (KRB) has been divided into six sub-watersheds (SW). Morphometric parameters (areal, linear, and relief) and hypsometric and asymmetric factors are measured for the delineation of morphotectonic evolution of the area. High values of drainage density, texture, ruggedness number, and hypsometric integral with relatively high volume of leftover rocks in the basin in SW-II and SW-III compared to the entire basin of KRB imply that these two sub-watersheds have been influenced by the tectonic activities. Further, detailed asymmetric data indicated that these two watersheds are tilted in opposite direction. It may be the result of reactivation of Precambrian fault/lineament in recent past. This has been supported by recent tremors and neotectonic studies in Kerala. Moreover, detailed field evidence along with google imagery revealed that the entire basin is a part of regional anticline associated with PCSZ. Geomorphic response to disturbance will produce a sensible, recognizable response; it can be well studied in rivers through detailed study of their sensitivity or behavioral changes. Rivers have an enormous capacity to absorb perturbation and these types of studies are essential for identifying/measuring tectonic activities, sediment diffusion, surface runoff in a drainage basin, and as an important tool for target oriented micro watershed management. 相似文献
8.
Th, U and K abundances in four alkali granites of the Kerala region, south-west India, are presented. The plutons show high radioelement levels, correlatable with those of alkali granites in other regions. The nature of variation is consistent with the correlation of Th and U with accessory phases like sphene, zircon, allanite, apatite and monazite. A geochronologic correlation is also observed between the alkali granites and the Th-bearing beach placers of the region. The petrogenetic features of the alkali plutons, their taphrogenic association, Pan-African affiliation and high Th/U levels suggest that the alkali plutons are favourable locales for radioelement exploration. 相似文献
9.
利用稳定同位素大气水平衡模式(iAWBM)的模拟数据,分析了在不同的下垫面蒸发和不同的凝结分馏条件下降水中δ18O的时间变化、降水量效应、负温度效应和大气水线。并通过与长沙站5年实测数据的比较以及模拟试验结果之间的相互比较,揭示下垫面蒸发水汽中稳定同位素的季节性变化和云中稳定同位素分馏对降水中稳定同位素变化的可能影响,增进对季风区水稳定同位素效应的理解和认识。iAWBM给出的4个模拟试验均很好地再现了监测站降水中δ18O的时间变化,模拟出季风区降水中稳定同位素在暖半年被贫化、在冷半年被富集的基本特点。与平衡分馏相比,动力分馏下降水中稳定同位素被贫化的程度加强、季节差和离散程度减小;由下垫面蒸发水汽中稳定同位素δe季节性变化所引起的降水中稳定同位素的变化在不同季节完全相反:在长沙,暖半年降水中δ18O更低,冷半年降水中δ18O更高,使得降水中稳定同位素季节差和离散程度增大。4个模拟试验均很好地再现了季风区的降水量效应和负温度效应。与平衡分馏相比,动力分馏下模拟的降水量效应和负温度效应的斜率相对较小;δe季节性变化导致模拟的降水量效应和负温度效应的斜率增大。利用iAWBM,模拟出季风区湿热气候条件下的MWL。动力分馏以及δe季节变化均使模拟得到的MWL的斜率和截距减小。 相似文献
10.
Mageswaran T. Sachithanandam V. Sridhar R. Mahapatra Manik Purvaja R. Ramesh R. 《Natural Hazards》2021,109(2):1717-1741
Natural Hazards - We report here a four decades of shoreline changes and possible sea level rise (SLR) impact on land use/land cover (LULC) in Little Andaman Island by using remote sensing (RS) and... 相似文献
11.
为了探讨连续降水过程中水汽输送的变化,应用NCEP/NCAR资料、HYSPLIT后向轨迹模拟及降水稳定同位素资料对北京22场连续降水的水汽输送差异进行了研究。结果表明:连续降水的水汽输送可分为西向水汽输送、远洋水汽输送、近海水汽输送、远源大陆水汽输送和局地大陆水汽输送5种类型,并以近海水汽输送和西向水汽输送为主(降水量占比60.8%)。不同水汽输送类型下降水δ18O的差异主要受水汽源区同位素富集程度及水汽输送途中降水过程的影响,降水氘盈余的变化反映出二次蒸发的影响及水汽源区大气相对湿度的差异。14场连续降水的水汽输送类型发生了变化,且降水δ18O值的变化能够较好地指示水汽输送类型的变化。该结果说明降水同位素特征能够为识别水汽输送类型提供有效信息。 相似文献
12.
Dams and their reservoirs, constructed to manage the water scarcity problems of a region, sometimes lose whole or part of their functionality due to sedimentation. This issue, seen as a negative impact as far as reservoir life and its purpose is concerned, can be a boon to the construction industry, by providing a highly demanding construction material in the form of sand dredged from the reservoirs. Malampuzha reservoir, a multipurpose reservoir in the South Indian state of Kerala, is also losing considerable part of its storage due to siltation. This paper assesses the rate of sedimentation in Malampuzha reservoir, through bathymetric survey and suggests measures for utilization of the removable sediment. Our analysis has shown that the reservoir capacity is reduced from 226 to 205.19 Mm3; a reduction in capacity of 20.81 Mm3 in 55 years. The rate of sedimentation of the reservoir is estimated as 16.95 mm/year. The dead storage capacity of the reservoir has reduced to 47.5 % from the original at present. The composition of deposited sediments is also identified, based on which its productive use is recommended. 相似文献
13.
由于多年冻土区流域土壤冻融过程对水循环影响的复杂性,水循环物理过程观测存在困难和不足,而利用稳定同位素方法可以有效地解决该问题。因此,基于2009年长江源风火山流域夏季定点降水和河水δD和δ18O,对研究区降水河水稳定同位素特征进行分析。结果表明,研究区夏季降水δD和δ18O受到降水量和温度的双重影响,即受海洋性和大陆局地气团的交替影响。河水氢氧同位素的季节变化和空间差异与壤中流、地下水补给河流的季节差异和植被覆盖的空间差异有关。随着地温升高和土壤冻融锋面的迁移,河水补给来源和同位素特征发生改变,表明土壤冻融变化对多年冻土流域径流过程起到重要作用。此外,蒸发分馏作用是研究区河水同位素的重要影响因素。 相似文献
14.
This paper is an analytical presentation of the pattern and persistence of groundwater level fluctuation in humid tropical regoliths. Using the Basement Complex in SW Nigeria as a microcosm of the crystalline rock environments in the humid tropics, the groundwater level fluctuation was monitored in three study areas for a number of consecutive years at the sites of observation wells sunk in thick regoliths. The sample data on saturated zone thickness and depth of water in well were analyzed by rigorous but suitable statistical techniques to identify the groundwater level fluctuation pattern and to asses its persistence. The fluctuation pattern in each study area is optimally described by an empirical equation and is perfectly in consonance with the prevailing rainfall regime. Tests for the persistence of the fluctuation pattern reveal that the groundwater regimes in the regoliths of the study areas are almost identical. by reference to the findings of some other research workers elsewhere in the humid tropics it is inferred, subject to verification from further research, that a generally similar groundwater regime prevails in humid tropical regoliths in low-relief deeply weathered landscapes. 相似文献
15.
With an aim to increase the understanding about the isotopic and chemical heterogeneity of calcites in water-conducting fracture zones with different crystalline wall rock compositions at different depths, we present trace element chemistry, isotopic composition (δ18O, δ13C, 87Sr/86Sr) and biomarkers of euhedral low-temperature fracture-coating calcite. Paleohydrogeological fluctuations and wall rock influence on the hydrochemistry in the deep groundwater are explored. Samples are from several fracture zone sub-fractures (at −360 to −740 m), retrieved during an extensive core drilling campaign in Sweden.Calcite generally showed fracture zone specific values of δ13C, δ18O and 87Sr/86Sr, which indicates precipitation from relatively homogeneous fluid (similar to the modern groundwater at the site) at the same event in each fracture zone. δ18O and δ13C in the different fracture zones were consistent with precipitation from waters of different salinity and decreasing organic input with depth, respectively. The latter is also supported by biomarkers showing clear indications of SRB-related organic compounds (e.g. iso- and anteiso-C17:0-branched fatty acids), except in the deepest zone. In contrast to the isotopes, variation in trace elements within the fracture zones was generally up to several orders of magnitude. Manganese and REE, as oppose to the other metals, were higher in the shallow fracture zones (112–1130 and 44–97 ppm, respectively) than in the deeper (28–272 and 5–11 ppm, respectively), in agreement with the groundwater composition. Although the rock types varied between and within the different fracture zones, this had insignificant influence on the trace element chemistry of the calcites. Co-variation was generally relatively large for many trace elements, with isometric logratio correlation generally better than 0.75, which indicates that their variation in the calcites is due to variation of Ca in the fracture water, but other local factors, especially uptake in co-precipitating minerals (clay minerals, barite, pyrite and zeolites), but also microbial activity and metal speciation may have influenced the metal incorporation into calcite. These detailed studies of fracture calcite are of importance for the understanding of variation in fluid chemistry and trace metal uptake in fracture zones, adding together with hydrochemical studies detailed information optimal for site characterisation. 相似文献
16.
A method of seismic zonation based on the deterministic modeling of rupture planes is presented. Finite rupture planes along identified lineaments are modeled in the Uttarakhand Himalaya based on the semi empirical technique of Midorikawa (Tectonophysics 218:287–295, 1993). The expected peak ground acceleration thus estimated from this technique is divided into different zones similar to zones proposed by the Bureau of Indian standard, BIS (Indian standards code of practice for earthquake-resistant design of structures, 2002). The proposed technique has been applied to Kumaon Himalaya area and the surrounding region for earthquakes of magnitude M > 6.0. Approximately 56000 km2 study area is classified into the highest hazard zone V with peak accelerations of more than 400 cm/s2. This zone V includes the cities of the Dharchula, Almora, Nainital, Haridwar, Okhimath, Uttarkashi, Pithorahargh, Lohaghat, Munsiari, Rudraprayag, and Karnprayag. The Sobla and Gopeshwar regions belong to zone IV, where peak ground accelerations of the order from 250 to 400 cm/s2 can be expected. The prepared map shows that epicenters of many past earthquakes in this region lie in zone V, and hence indicating the utility of developed map in defining various seismic zones. 相似文献
17.
The distilling effect of evaporation and the diluting effect of precipitation on salinity at two estuarine sites in the humid
subtropical setting of the Indian River Lagoon, Florida, were evaluated based on daily evaporation computed with an energy-budget
method and measured precipitation. Despite the larger magnitude of evaporation (about 1,58 mm yr−1) compared to precipitation (about 1,180 mm yr−1) between February 2002 and January 2004, the variability of monthly precipitation induced salinity changes was more than
twice the variability of evaporation induced changes. Use of a constant, mean value of evaporation, along with measured values
of daily precipitation, were sufficient to produce simulated salinity changes that contained little monthly (root-mean-square
error = 0.33‰ mo−1 and 0.52‰ mo−1 at the two sites) or cumulative error (<1‰ yr−1) compared to simulations that used computed daily values of evaporation. This result indicates that measuring the temporal
variability in evaporation may not be critical to simulation of salinity within the lagoon. Comparison of evaporation and
precipitation induced salinity changes with measured salinity changes indicates that evaporation and precipitation explained
only 4% of the changes in salinity within a flow-through area of the lagoon; surface water and ocean inflows probably accounted
for most of the variability in salinity at this site. Evaporation and precipitation induced salinity changes explained 61%
of the variability in salinity at a flow-restricted part of the lagoon. 相似文献
18.
On the basis of different photosynthetic pathways.there is an obvious difference in δ^13C values between C3 and C4 plants,In terms of this characteristic,we analyzed the organic carbon content (forestlands:1.81%-16.00%;farmland:0.45%-2.22%) and δ^13C values(forestlands:-23.86‰--27.12‰;farmland:-19.66‰--23.26‰)of three profile-soil samples either in farmland or in forestland near the Maolan Karst virgin forest,where there were developed plant C3 plants previously and now are C4 plants.Results showed that the deforestation has accelerated the decomposition rate of soil organic matter and reduced the proportion of active components in soil organic matter and thus soil fertility. 相似文献
19.
River water composition (major ion and 87Sr/86Sr ratio) was monitored on a monthly basis over a period of three years from a mountainous river (Nethravati River) of southwestern India. The total dissolved solid (TDS) concentration is relatively low (46 mg L−1) with silica being the dominant contributor. The basin is characterised by lower dissolved Sr concentration (avg. 150 nmol L−1), with radiogenic 87Sr/86Sr isotopic ratios (avg. 0.72041 at outlet). The composition of Sr and 87Sr/86Sr and their correlation with silicate derived cations in the river basin reveal that their dominant source is from the radiogenic silicate rock minerals. Their composition in the stream is controlled by a combination of physical and chemical weathering occurring in the basin. The molar ratio of SiO2/Ca and 87Sr/86Sr isotopic ratio show strong seasonal variation in the river water, i.e., low SiO2/Ca ratio with radiogenic isotopes during non-monsoon and higher SiO2/Ca with less radiogenic isotopes during monsoon season. Whereas, the seasonal variation of Rb/Sr ratio in the stream water is not significant suggesting that change in the mineral phase being involved in the weathering reaction could be unlikely for the observed molar SiO2/Ca and 87Sr/86Sr isotope variation in river water. Therefore, the shift in the stream water chemical composition could be attributed to contribution of ground water which is in contact with the bedrock (weathering front) during non-monsoon and weathering of secondary soil minerals in the regolith layer during monsoon. The secondary soil mineral weathering leads to limited silicate cation and enhanced silica fluxes in the Nethravati river basin. 相似文献
20.
Characterizing spatial and seasonal variability of carbon dioxide and water vapour fluxes above a tropical mixed mangrove forest canopy, India 总被引:1,自引:0,他引:1
ABHRA CHANDA ANIRBAN AKHAND SUDIP MANNA SACHINANDAN DUTTA SUGATA HAZRA INDRANI DAS V K Dadhwal 《Journal of Earth System Science》2013,122(2):503-513