首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three reactions involving Mg-chlorite-muscovite and quartz werestudied between 5 and 10 kilobars water pressure over a temperaturerange of 600–700 °C using mixtures of synthetic clinochlore,muscovite and quartz as starting materials. Three reactionswere reversed in this system. 3 chlorite+5 muscovite + 8 kyanite+ 5 phlogopite + 1 quartz + 12 H2O was reversed between 639.5±5.3°C and 531.8±5.1 °C at 7.24 kb and between 645.9±5.7°C and634.1±6.0°C at8.27kb. A second reaction: 1 chlorite+ 1 muscovite+2 quartz = 1 phlogopite+ 1 cordierite + 3.5 H2O was reversed between 6370±60°C and 622.8±5.2°C at 6.21 kb. A third reaction: 3 cordierite+2 muscovite = 2 phlogopite +8 alumino-silicate + 7 quartz + 1.5 H2O was reversed between660.l±5.7 °C and 650.l±5.3 °C at 6.21kb. This reaction is terminated at the beginning of melting around725 °C at 5.65 kb. These reactions determine the upper stability limits of Mg-chlorite-muscoviteand quartz assemblages between 5 and 10 kb water pressure. Theresults may be used in delimiting the upper stability of similarassemblages in natural systems.  相似文献   

2.
The second of two periods of regional metamorphism that affectedpelitic rocks near Snow Peak caused complete re-equilibrationof mineral assemblages and resulted in a consistent set of metamorphicisograds. Metamorphic chlorite and biotite occur in the lowestgrade rocks. With increasing grade, garnet, staurolite, andkyanite join the assemblage, resulting in a transition zonecontaining all the above phases. At higher grade, chlorite,and finally staurolite disappear. Mass balance relations at isograds and among minerals of low-varianceassemblages have been modelled by a non-linear least-squaresregression technique. The progressive sequence can be describedin terms of schematic T-XH2O relations among chlorite, biotite,garnet, staurolite, and kyanite at Ptotal above the KFMASH invariantpoint involving those phases. The first appearance of garnetwas the result of an Fe-Mg-Mn continuous reaction. As temperaturerose, the garnet zone assemblage encountered the stauroliteisograd reaction, approximated by the model reaction: 3?0 chlorite + 1?5 garnet + 3?3 muscovite + 05 ilmenite = 1?0staurolite + 3?1 biotite + 1?5 plagioclase + 3?3 quartz + 10?3H2O. The staurolite zone corresponds to buffering along this reactionto the intersection where chlorite, biotite, garnet, staurolite,and kyanite coexist. The transition zone assemblage formed byreaction at this T–X H2O intersection which migrates towardmore H2O-rich fluid composition with progressive reaction. Thenet reaction at the intersection is approximated by the transitionzone reaction: 1?0 chlorite +1?1 muscovite + 0?2 ilmenite = 2?7 kyanite + 1?0biotite + 0?4 albite + 4?2 H2O. Chlorite was commonly the first phase to have been exhaustedand the remaining assemblage was buffered along a staurolite-outreaction, represented by the model reaction: 1?0 staurolite + 3?4 quartz + 0?4 anorthite + 1?4 garnet + 0?1ilmenite + 7?9 kyanite + 2?0 H2O. Consumption of staurolite by this reaction resulted in the highestgrade assemblage, which contains kyanite, garnet, biotite, muscovite,quartz, plagioclase, ilmenite, and graphite.  相似文献   

3.
The granulites of the Saxon Granulite Massif equilibrated athigh pressure and ultrahigh temperature and were exhumed inlarge part under near-isothermal decompression. This raisesthe question of whether P–T–t data on the peak metamorphismmay still be retrieved with confidence. Felsic and mafic granuliteswith geochronologically useful major and accessory phases haveprovided a basis to relate P–T estimates with isotopicages presented in a companion paper. The assemblage garnet +clinopyroxene in mafic granulite records peak temperatures of1010–1060°C, consistent with minimum estimates ofaround 967°C and 22·3 kbar obtained from the assemblagegarnet + kyanite + ternary feldspar + quartz in felsic granulite.Multiple partial overprint of these assemblages reflects a clockwiseP–T evolution. Garnet and kyanite in the felsic granulitewere successively overgrown by plagioclase, spinel + plagioclase,sapphirine + plagioclase, and biotite + plagioclase. Most ofthis overprinting occurred within the stability field of sillimanite.Garnet + clinopyroxene in the mafic granulite were replacedby clinopyroxene + amphibole + plagioclase + magnetite. Thehigh P–T conditions and the absence of thermal relaxationfeatures in these granulites require a short-lived metamorphismwith rapid exhumation. The ages of peak metamorphism (342 Ma)and shallow-level granitoid intrusions (333 Ma) constrain thetime span for the exhumation of the Saxon granulites to  相似文献   

4.
The beginning of melting in the system Qz-Or-Ab-An-H2 O was experimentally reversed in the pressure range kbar using starting materials made up of mixtures of quartz and synthetic feldspars. With increasing pressure the melting temperature decreases from 690° C at 2 kbar to 630° C at 17 kbar in the An-free alkalifeldspar granite system Qz-Or-Ab-H2O. In the granite system Qz-Or-Ab-An-H2O the increase of the solidus temperature with increasing An-content is only very small. In comparison to the alkalifeldspar granite system the solidus temperature increases by 3° C (7° C) if albite is replaced by plagioclase An 20 (An 40). The difference between the solidus temperatures of the alkalifeldspar granite system and of quartz — anorthite — sanidine assemblages (system Qz-Or-An-H2O) is approximately 50° C. With increasing water pressures plagioclase and plagioclase-alkalifeldspar assemblages become unstable and are replaced by zoisite+kyanite+quartz and zoisite+muscovite-paragonitess +quartz, respectively. The pressure stability limits of these assemblages are found to lie between 6 and 16 kbar at 600° C. At high water pressures (10–18 kbar) zoisite — muscovite — quartz assemblages are stable up to 700 and 720° C. The solidus curve of this assemblage is 10–20° C above the beginning of melting of sanidine — zoisite — muscovite — quartz mixtures. The amount of water necessary to produce sufficient amounts of melt to change a metamorphic rock into a magmatic looking one is only small. In case of layered migmatites it is shown that 1 % of water (or even less) is sufficient to transform portions of a gneiss into (magmatic looking) leucosomes. High grade metamorphic rocks were probably relatively dry, and anatectic magmas of granitic or granodioritic composition are usually not saturated with water.  相似文献   

5.
The Witwatersrand goldfields contain abundant assemblages that include pyrophyllite, chloritoid, chlorite, kaolinite and/or kyanite, with quartz. A chemographic analysis of the system Fe(Mg)-Al-Si-O-H involving these minerals yields 22 potential phase diagrams. Using orientation criteria and thermodynamic calculations as further constraints, this list has been reduced to three possible diagrams. New thermodynamic data favour one of these in particular.
This chemographic analysis demonstrates that formation of chloritoid is not restricted to the breakdown reaction of kaolinite plus chlorite in the F(M)ASH system, as stated by previous studies, but could be from pyrophyllite + chlorite → chloritoid + quartz + H2O.
The metamorphic temperature variation between Witwatersrand goldfields exceeded 65 C, based on chlorite and chloritoid compositions. The lower and upper pressure limits are constrained by the andalusite to kyanite, and the sudoite/chlorite to carpholite boundaries, i.e. 1.5–2.8, and 7 kbar, respectively. The widespread pyrophyllite, chlorite and Fe-chloritoid in all the Witwatersrand goldfields, and the local occurrence of sudoite indicate a consistent low-pressure environment in which Mg-chloritoid would not be stable.  相似文献   

6.
Talc–kyanite schists (whiteschists), magnesiohornblende–kyanite–talc–quartzschists and enstatite–sapphirine–chlorite schistsoccur at Mautia Hill in the East African Orogen of Tanzania.They are associated with metapelites and garnet–clinopyroxene–quartzmetabasites. Geobarometry (GASP/GADS equilibria) applied tothe latter two rock types indicates a peak pressure of P = 10–11kbar. These results are confirmed by the high fO2 assemblagehollandite–kyanite–quartz and late-stage manganianandalusite that contains up to 19·5 mol. % Mn2SiO5. Maximumtemperatures of T = 720°C are inferred from late-stage yoderite+ quartz. A clockwise PT evolution is constrained byprograde kyanite inclusions in metapelitic garnet and late-stagereaction rims of cordierite between green yoderite and talcthat reflect conditions at least 3–4 kbar below the peakpressure. Oxidizing conditions are recorded throughout the metamorphichistory of the whiteschists and chlorite schists, as indicatedby the presence of haematite coexisting with pseudobrookiteand/or rutile. Increasing water activity near peak pressuresis thought to have led to the breakdown of the high-pressureassemblages (Tlc–Ky–Hem and Mg-Hbl–Ky–Hem)and the subsequent formation of certain uncommon minerals, e.g.yellow sapphirine, Mn–andalusite, green and purple yoderite,piemontite and boron-free kornerupine. The proposed increasein water activity is attributed to fluid infiltration resultingfrom the devolatilization of underlying sediments during metamorphism. KEY WORDS: fluid infiltration; high-pressure amphibolite facies; East African Orogen; Pan-African; whiteschist  相似文献   

7.
Textural evidence, thermobarometry, and geochronology were usedto constrain the pressure-temperature-time (P—T—t)history of the southern portion of the Britt domain in the CentralGneiss Belt, Ontario Grenville Province. Typical metapeliticassemblages are quartz+plagioclase+ biotite + garnet + kyanite alkali feldspar sillimanite rutile ilmenite staurolite gahnite muscovite. Metatonalitic assemblages have quartz+ plagioclase + garnet biotite + hornblende + rutile + ilmenite.Metagabbroic rocks contain plagioclase + garnet + clinopyroxene+ biotite + ilmenite hornblende rutile quartz. Notabletextural features include overgrowths of sillimanite on kyaniteand of spinel on staurolite. The spinel overgrowths can be modeledby the breakdown of staurolite via the reaction Fe-staurolite= hercynite +kyanite + quartz + H2O. The decomposition of stauroliteto her-cynite has a steep dP/dT slope and constrains the lateprograde path of a staurolite metapelite. Garnet—Al2SiO5—plagioclase—quartz(GASP) barometry applied to metapelitic garnets that preservecalcium zoning reveals a pressure decrease from 11 to 6 kbat an assumed temperature of 700 C. Garnet—plagioclase—ilmenite—rutile—quartzand garnet—clinopyroxene—plagioclase—quartzbarometry is in good agreement with pressures obtained withthe GASP barometer. Geochronologic data from garnet, allanite,and monazite in metapelitic rocks give ages that fall into twogroups, 1–4 Ga and 1.1 Ga, suggesting the presence ofat least two metamorphic events in the area. It is most reasonableto assign the 1.4 Ga age to the high-pressure data and the 1.1Ga age to the lower-pressure data. Collectively the P—T—tdata indicate a complex and protracted history rather than asingle cycle of burial and uplift for this part of the GrenvilleProvince.  相似文献   

8.
Chris D. Parkinson   《Lithos》2000,52(1-4):215-233
Coarse-grained whiteschist, containing the assemblage: garnet+kyanite+phengite+talc+quartz/coesite, is an abundant constituent of the ultrahigh-pressure metamorphic (UHPM) belt in the Kulet region of the Kokchetav massif of Kazakhstan.

Garnet displays prograde compositional zonation, with decreasing spessartine and increasing pyrope components, from core to rim. Cores were recrystallized at T=380°C (inner) to 580°C (outer) at P<10 kbar (garnet–ilmenite geothermometry, margarite+quartz stability), and mantles at T=720–760°C and PH20=34–36 kbar (coesite+graphite stability, phengite geobarometer, KFMASH system reaction equilibria). Textural evidence indicates that rims grew during decompression and cooling, within the Qtz-stability field.

Silica inclusions (quartz and/or coesite) of various textural types within garnets display a systematic zonal distribution. Cores contain abundant inclusions of euhedral quartz (type 1 inclusions). Inner mantle regions contain inclusions of polycrystalline quartz pseudomorphs after coesite (type 2), with minute dusty micro-inclusions of chlorite, and more rarely, talc and kyanite in their cores; intense radial and concentric fractures are well developed in the garnet. Intermediate mantle regions contain bimineralic inclusions with coesite cores and palisade quartz rims (type 3), which are also surrounded by radial fractures. Subhedral inclusions of pure coesite without quartz overgrowths or radial fractures (type 4) occur in the outer part of the mantle. Garnet rims are silica-inclusion-free.

Type 1 inclusions in garnet cores represent the low-P, low-T precursor stage to UHPM recrystallization, and attest to the persistence of low-P assemblages in the coesite-stability field. Coesites in inclusion types 2, 3, and 4 are interpreted to have sequentially crystallized by net transfer reaction (kyanite+talc=garnet+coesite+H2O), and were sequestered within the garnet with progressively decreasing amounts of intragranular aqueous fluid.

During the retrograde evolution of the rock, all three inclusion types diverged from the host garnet PT path at the coesite–quartz equilibrium, and followed a trajectory parallel to the equilibrium boundary resulting in inclusion overpressure. Coesite in type 2 inclusions suffered rapid intragranular H2O-catalysed transformation to quartz, and ruptured the host garnet at about 600°C (when inclusion P27 kbar, garnet host P9 kbar). Instantaneous decompression to the host garnet PT path, passed through the kyanite+talc=chlorite+quartz reaction equilibrium, resulting in the dusty micro-assemblage in inclusion cores. Type 3 inclusions suffered a lower volumetric proportion transformation to quartz at the coesite–quartz equilibrium, and finally underwent rupture and decompression when T<400°C, facilitating coesite preservation. Type 4 coesite inclusions are interpreted to have suffered minimal transformation to quartz and proceeded to surface temperature conditions along or near the coesite–quartz equilibrium boundary.  相似文献   


9.
Petrology and phase equilibria of rocks from two profiles inEastern Nepal from the Lesser Himalayan Sequences, across theMain Central Thrust Zone and into the Greater Himalayan Sequencesreveal a Paired Metamorphic Mountain Belt (PMMB) composed oftwo thrust-bound metamorphic terranes of contrasting metamorphicstyle. At the higher structural level, the Greater HimalayanSequences experienced high-T/moderate-P metamorphism, with ananticlockwise P–T path. Low-P inclusion assemblages ofquartz + hercynitic spinel + sillimanite have been overgrownby peak metamorphic garnet + cordierite + sillimanite assemblagesthat equilibrated at 837 ± 59°C and 6·7 ±1·0 kbar. Matrix minerals are overprinted by numerousmetamorphic reaction textures that document isobaric coolingand re-equilibrated samples preserve evidence of cooling to600 ± 45°C at 5·7 ±1·1 kbar.Below the Main Central Thrust, the Lesser Himalayan Sequencesare a continuous (though inverted) Barrovian sequence of high-P/moderate-Tmetamorphic rocks. Metamorphic zones upwards from the loweststructural levels in the south are: Zone A: albite + chlorite + muscovite ± biotite; Zone B: albite + chlorite + muscovite + biotite + garnet; Zone C: albite + muscovite + biotite + garnet ± chlorite; Zone D: oligoclase + muscovite + biotite + garnet ± kyanite; Zone E: oligoclase + muscovite + biotite + garnet + staurolite+ kyanite; Zone F: bytownite + biotite + garnet + K-feldspar + kyanite± muscovite; Zone G: bytownite + biotite + garnet + K-feldspar + sillimanite+ melt ± kyanite. The Lesser Himalayan Sequences show evidence for a clockwiseP–T path. Peak-P conditions from mineral cores average10·0 ± 1·2 kbar and 557 ± 39°C,and peak-metamorphic conditions from rims average 8·8± 1·1 kbar and 609 ± 42°C in ZonesD–F. Matrix assemblages are overprinted by decompressionreaction textures, and in Zones F and G progress into the sillimanitefield. The two terranes were brought into juxtaposition duringformation of sillimanite–biotite ± gedrite foliationseams (S3) formed at conditions of 674 ± 33°C and5·7 ± 1·1 kbar. The contrasting averagegeothermal gradients and P–T paths of these two metamorphicterranes suggest they make up a PMMB. The upper-plate positionof the Greater Himalayan Sequences produced an anticlockwiseP–T path, with the high average geothermal gradient beingpossibly due to high radiogenic element content in this terrane.In contrast, the lower-plate Lesser Himalayan Sequences weredeeply buried, metamorphosed in a clockwise P–T path anddisplay inverted isograds as a result of progressive ductileoverthrusting of the hot Greater Himalayan Sequences duringprograde metamorphism. KEY WORDS: thermobarometry; P–T paths; Himalaya; metamorphism; inverted isograds; paired metamorphic belts  相似文献   

10.
The Adula Nappe is a slice of Pre-Mesozoic continental basementaffected by Early Alpine (Mesozoic or Lower Tertiary) high-pressuremetamorphism. Mineral compositions in mafic rocks containingomphacite + garnet + quartz record a continuous regional trendof increasing recrystalliza tion temperatures and pressuresthat can be ascribed to this regional high-pressure metamorphicevent. P-T estimates derived from mineral compositions gradefrom about 12 kb and 500 ?C or less in the north of the nappeto more than 20 kb/800 ?C in the south. The regional P-T trend is associated with a mineralogical transitionfrom assemblages containing additional albite and abundant amphiboles,epidote minerals, and white micas in the north (omphacite-garnetamphibolites) to kyanite eclogites containing smaller amountsof hornblende and zoi.site in the south. Textures and mineralcompositional data show that these hydrous and anhydrous silicatesassociated with omphacite + garnet + quartz arc primary partsof the high-pressure assem blages. Observed phase relationsbetween these primary silicates, theoretical Schreinemakersanalysis, and the thermobarometric results, together indicatethat the regional transition from omphacite amphibolites tokyanite eclogites can be described by two simplified reactions: alb+epi+hbl=omp+kya+qtz+par (H2O-conserving) (15) par+epi+hbl+qtz=omp+kya+H2O (dehydration) (12) which have the character of isograd reactions. Local variations of water activity (aH2O) as indicated by isofacialmineral assemblages, and the H2O character of the reaction (15),are interpreted to reflect largely H and predominantly fluid-absenthigh-pressure metamorphism within the northern part of the nappe.The omphacite amphibolites and paragonite eclogites in thisarea are thought to have formed by H2O reactions from Pre-Mesozoichigh-grade amphibolites, i.e. from protoliths of similar bulkH2O-countent. The second ‘isograd’ (12) is interpreted to markthe regional transition from largely fluid-absent metamorphismin the north to fluid-present metamorphism in the south, wheremetamorphic pressures and temperatures in excess of 12-15kband 500-600?C were sufficient for prograde in-situ dehydrationof similar hydrous protoliths to kyanite eclogites. The observationof abundant veins, filled with quartz+kyanite+omphacite, suggeststhat a free fluid coexisted locally with the kyanite eclogitesof the southern Adula Nappe at some time during progressivedehydration.  相似文献   

11.
Both high- and medium-pressure granulites have been found asenclaves and boudins in tonalitic–trondhjemitic–granodioriticgneisses in the Hengshan Complex. Petrological evidence fromthese rocks indicates four distinct metamorphic assemblages.The early prograde assemblage (M1) is preserved only in thehigh-pressure granulites and represented by quartz and rutileinclusions within the cores of garnet porphyroblasts, and omphacitepseudomorphs that are indicated by clinopyroxene + sodic plagioclasesymplectic intergrowths. The peak assemblage (M2) consists ofclinopyroxene + garnet + sodic plagioclase + quartz ±hornblende in the high-pressure granulites and orthopyroxene+ clinopyroxene + garnet + plagioclase + quartz in the medium-pressuregranulites. Peak metamorphism was followed by near-isothermaldecompression (M3), which resulted in the development of orthopyroxene+ clinopyroxene + plagioclase symplectites and coronas surroundingembayed garnet grains, and decompression-cooling (M4), representedby hornblende + plagioclase symplectites on garnet. The THERMOCALCprogram yielded peak (M2) P–T conditions of 13·4–15·5kbar and 770–840°C for the high-pressure granulitesand 9–11 kbar and 820–870°C for the medium-pressuregranulites, based on the core compositions of garnet, matrixpyroxene and plagioclase. The P–T conditions of pyroxene+ plagioclase symplectite and corona (M3) were estimated at  相似文献   

12.
The mid-Jurassic calcalkaline Russian Peak intrusive complex,located in the Klamath Mountains of northern California, consistsof an elliptical peridotite-to-quartz diorite suite intrudedby two plutons of granodiorite. Several techniques were usedto decipher the crystallization conditions for ultramafic rocks,quartz diorite, and granodiorite, including comparison of parageneseswith crystallization experiments, application of geothermometersand barometers, and evaluation of phase equilibria. Contactmetamorphic assemblages, hornblende barometry, and amphibolesubstitution schemes indicate that pressures of intrusion were{small tilde}3 kbar. Plagioclase and pyroxene thermometry indicateintrusion temperatures of {small tilde}1000C for quartz dioriteand 900C for granodiorite. Phase equilibrium analysis for thereaction phlogopite+quartz=K-feldspar+enstatite+H2O, coupledwith an estimate of the water-saturated quartz diorite solidus,suggests that the solidus of two-pyroxene quartz diorite wasat {small tilde}780C with a mole fraction of water of {smalltilde}0•55. The composition of granodiorite is very similarto that used in several crystallization experiments and indicatesa solidus of 70025C. Estimates of oxygen fugacity, obtainedfrom equilibrium relations of olivine, orthopyroxene, and spinelin ultramafic rocks, magnetite and ilmenite in quartz diorite,and magnetite, K-feldspar, and biotite in quartz diorite andgranodiorite are 2•1–2•5 and 1•0–1•3log units above the quartz-fayalite-magnetite (QFM) buffer forgranodiorite and quartz diorite at their respective solidustemperatures; and 1•0–4•0 log units above QFMfor ultramafic rocks and quartz diorite at subsolidus temperatures.Thus, the quartz diorite magma was hotter, drier, and slightlyreduced relative to the grandiorite magma, differences thatset important constraints on the genesis of the Russian Peakmagmas. These results also indicate that quartz diorite wasundersaturated with respect to H2O as it reached its solidus,a condition that is consistent with the absence of deutericalteration in this unit. In contrast, granodiorite shows extensivedeuteric alteration and features pegmatites, quartz pods, andradial dikes as might be expected for H2O-saturated conditions. Although calcalkaline plutonic complexes present serious difficultiesin estimating the intensive parameters of crystallization, judiciousapplication of appropriate methods may result in the successfulevaluation of the conditions of crystallization of such complexes.  相似文献   

13.
Mineral assemblages and textures are described from clinopyroxene-bearingmeta-syenites and related rocks from a small area in the PenninicBasement Complex of the south-east Tauern Window. Evidence from mineral textures, mineral compositions and geobarometryindicate that the clinopyroxene, a sodic salite, crystallizedas part of an equilibrium albite-epidote-amphibolite faciesparagenesis in the 35–40 Ma meso-Alpine metamorphic event.Phase relations in co-facial quartz + albite + K-feldspar +sphene-bearing meta-syenites and meta-granites are examinedusing a projection from these minerals onto the plane (A12O3+ Fe2O3)-CaO-(MgO + FeO + MnO). The projection demonstratesthat salitic clinopyroxene can only be a stable phase in suchrocks if the bulk-rock Al/Na + K ratios are low. This is confirmedby comparing the whole-rock analyses of clinopyroxene-bearingmeta-syenites with those of clinopyroxene-free meta-syenitesand meta-granites. Mineral assemblages in a variety of lithologies from the south-eastTauern Window are used to construct a generalized AKM diagramfor magnesian albite + epidote + quartz-bearing rocks of thealbite-epidote-amphibolite facies. Thermochemical calculations indicate that the meta-syeniteswere metamorphosed at temperatures close to 500 C and at a pressureof 6+2 –4 kb. Fluids in equilibrium with meta-syeniteand meta-granite mineral assemblages had XH2O values of 0–95,assuming XH2O + XCO2O= 1.0.  相似文献   

14.
High-density CO2 inclusions occur abundantly in granulite fadesrocks (age of metamorphism 2–5b.y.) of the Nilgiri massif,southern India. The chronology of carbonic inclusions in thewidespread enderbitic granulites studied in relation to thedevelopment of micro-textures and mineral assemblages indicatesthat randomly oriented, negative-crystal-shaped CO2 inclusions(4–20 µim) in garnet and quartz grains (qtz I) armouredby garnet entrap syn-peak-metamorphic pore fluids. The moreabundant trail-bound CO2 inclusions in the deformed, polygonized,and partially recrystallized matrix quartz grains (qtz II andIII) and plagioclase grains were formed in connection with astage of compressional deformation and subsequent annealingrelated to the development of the late-Proterozoic Bhavani shearzone. These inclusions resulted from local re-equilibrationof the former peak-granulitic carbonic inclusions and re-entrapmentof released fluids. The presence of pure CO2 in all the inclusionsis confirmed by microthermometric data and laser-excited Ramanmicrospectrome-try. Temperatures of homogenization (liquid phase)are in the range of 50 to +20C, and the corresponding CO2 densitiesare between 1.154 and 0–807 g/cm3. Mineralogical thermobarometry on the enderbitic granulites documentsa continuous gradient of near-peak metamorphic conditions from750C, 9–10 kb in the northern part to 73OC, 7 kb inthe southwestern part of the Nilgiri massif. Uniform P, Testimates(600–650 C, 6–7 kb) for late coronitic garnet +quartz assemblages in enderbites and metadolerites indicatethat differential uplift of the massif to mid-crustal levelswas accomplished before late compressional deformation. In conformity,carbonic inclusions in quartz II and III are characterized byuniformly high density (1.154–1.08 g/cm3). In contrast,early carbonic inclusions in garnet and quartz I preserve thedensity contrast reflecting the regional P, T gradient duringnear-peak metamorphic fluid entrapment. The fluid inclusionsys-tematics indicate ‘near-isochoric’ uplift ofthe northern high-P domain, but near-isobaric cooling of thesouthwestern low-P domain. The carbonic fluids are thought tohave been derived either from internal sources during dehydration-meltingprocesses or from freezing synmetamorphic intrusives into thelower crust.  相似文献   

15.
The Bixiling mafic-ultramafic metamorphic complex is a 1•5km2 tectonic block within biotite gneiss in the southern Dabieultrahigh-pressure terrane, central China. The complex consistsof banded eclogites that contain thin layers of garnet-bearingcumulate ultramafic rock. Except for common eclogitic phases(garnet, omphacite, kyanite, phengite, zoisite and rutilc),banded eclogites contain additional talc and abundant coesiteinclusions in omphacite, zoisite, kyanite and garnet. Some metaultramaficrocks contain magnesite and Ti-clinohumite. Both eclogites andmeta-ultramafic rocks have undergone multi-stage metamorphism.Eclogite facies metamorphisrn occurred at 610–700C andP>27 kbar, whereas amphibolite facies retrograde metamorphismis characterized by symplectites of plagioclase and hornblendeafter omphacite and replacement of tremolite after talc at P<6–15kbar and T <600C. The meta-ultramafic assemblages such asolivine + enstatite + diopside + garnet and Ti-clinohumite +diopside + enstatite + garnet + magnesite olivine formed at700–800C and 47–67 kbar. Investigation of the phaserelations for the system CaO-MgO-SiO2-H2O-CO2 and the experimentallydetermined stabilities of talc, magnesite and Ti-clinohumiteindicate that (1) UHP talc assemblages are restricted to Mg-Algabbro composition and cannot be an important water-bearingphase in the ultramafic mantle, and (2) Ti-clinohumite and magnesiteare stable H2O-bearing and CO2-bearing phases at depths >100km. The mafic-ultramafic cumulates were initially emplaced atcrustal levels, then subducted to great depths during the Triassiccollision of the Sine-Korean and Yangtze cratons. KEY WORDS: eclogite; magnesite; meta-ultramafics; talc; ultrahigh-P metamorphism *Corresponding author  相似文献   

16.
Low-grade Mn-rich metamorphic rocks of the Lienne syncline (westernpart of the Venn–Stavelot Massif, Belgian Ardennes) havebeen re-examined to evaluate the petrological significance ofcarpholite proper, Mn2$ Al2[Si2O6](OH)4. Metamorphic P–Tconditions of these rocks are estimated to be {small tilde}300C1–2 kbar, which is in accordance with the exclusive occurrenceof carpholite in low-P rocks such as hydrothermal environmentselsewhere. Carpholite of the Lienne syncline exclusively occursin quartz-rich segregations. Its composition is close to end-member.Thermodynamic calculations confirm that carpholite is a stablephase at low-pressure–low-temperature conditions, in contrastto ferro- and magnesiocarpholite, which are high-pressure minerals.No information is available on the high-P behaviour of carpholite.The occurrence of carpholite is partly closely associated withspessartine-bearing country rocks, or carpholite is alteredto assemblages with spessartine, sudoite, chlorite, muscoviteand paragonite. Spessartine in these rocks contains minor amountsof hydrogarnet component {(H/4)/[Si$(H/4)] = 0.03–0.06}.The presence of carpholite-spessartine assemblages in theselow-P rocks is in contrast to high-pressure metamorphic rocksfrom other areas, where parageneses such as fem/magnesiocarpholite–chloritoidor magnesiocarpholite–chlorite–kyanite occur. Theappearance of carpholite–garnet assemblages in low-P Mn-richrocks can be explained by contrasting phase relations becauseof a high Mn–Mg partition coefficient between the mineralsunder consideration. In rhodo-chrosite-bearing veins in theLienne syncline, nearly complete replacement of carpholite byspessartine and chlorite is due to the continuous reaction carpholite$ rhodochrosite $ quartz = spessartine $ chlorite $ H2O $ CO2,which defines a very low Xco, in the temperature range underconsideration. It is suggested that spessartine (possibly containingsome hydrogarnet component), during prograde metamorphism atlow pressure, becomes stable at a temperature of {small tilde}300C KEY WORDS: carpholite; spessartine; sudoite; Venn–Stavelot Massif; Ardemes *Corresponding author. Fax: x49/531/3918131. e-mail: t.theye{at}tu.bs.de  相似文献   

17.
F.S. Spear  G. Franz 《Lithos》1986,19(3-4):219-234
Petrologic data on the paragenesis of (I) kyanite-zoisite marbles and (II) garnet-chloritoid quartz-mica schists are presented with the goal of providing constraints on the pressure-temperature evolution of the Eclogite Zone, Tauern Window, Austria. The peak metamorphic assemblages in the two rock types are: (I) kyanite + zoisite + dolomite + quartz; zoisite + muscovite + dolomite + calcite + quartz; and (II) garnet + chloritoid + kyanite + muscovite + quartz + epidote ± dolomite ± Zn-staurolite. The estimated peak metamorphic conditions are 19 ± 2 kbar, 590 ± 20°C.

Secondary alteration of the kyanite-zoisite marbles was accomplished in two stages. The early stage resulted in the production of margarite, paragonite, secondary muscovite and chlorite and the later stage resulted in the formation of sudoite (a di/trioctahedral Mg---Al layer silicate) and kaolinite. The early alteration is bracketed at conditions between 3 and 10 kbar, 450–550°C and the later alteration between 200 and 350°C, P 3 kbar.

The P-T path is characterized by maximum burial to approximately 19 kbar (60–70 km) (at≈590°C), followed by nearly isothermal decompression to approximately 10 kbar (30 km), and then more gradual decompression with cooling to approximately 3 kbar (10 km). Alteration was apparently accomplished by the influx of H2O-rich fluids, with the composition of the fluid locally buffered by the mineral assemblage.  相似文献   


18.
Quartz‐kyanite veins, adjacent alteration selvages and surrounding ‘precursor’ wall rocks in the Dalradian Saxa Vord Pelite of Unst in the Shetland Islands (Scotland) were investigated to constrain the geochemical alteration and mobility of Al associated with channelized metamorphic fluid infiltration during the Caledonian Orogeny. Thirty‐eight samples of veins, selvages and precursors were collected, examined using the petrographic microscope and electron microprobe, and geochemically analysed. With increasing grade, typical precursor mineral assemblages include, but are not limited to, chlorite+chloritoid, chlorite+chloritoid+kyanite, chlorite+chloritoid+staurolite and garnet+staurolite+kyanite+chloritoid. These assemblages coexist with quartz, white mica (muscovite, paragonite, margarite), and Fe‐Ti oxides. The mineral assemblage of the selvages does not change noticeably with metamorphic grade, and consists of chloritoid, kyanite, chlorite, quartz, white mica and Fe‐Ti oxides. Pseudosections for selvage and precursor bulk compositions indicate that the observed mineral assemblages were stable at regional metamorphic conditions of 550–600 °C and 0.8–1.1 GPa. A mass balance analysis was performed to assess the nature and magnitude of geochemical alteration that produced the selvages adjacent to the veins. On average, selvages lost about −26% mass relative to precursors. Mass losses of Na, K, Ca, Rb, Sr, Cs, Ba and volatiles were −30 to −60% and resulted from the destruction of white mica. Si was depleted from most selvages and transported locally to adjacent veins; average selvage Si losses were about −50%. Y and rare earth elements were added due to the growth of monazite in cracks cutting apatite. The mass balance analysis also suggests some addition of Ti occurred, consistent with the presence of rutile and hematite‐ilmenite solid solutions in veins. No major losses of Al from selvages were observed, but Al was added in some cases. Consequently, the Al needed to precipitate vein kyanite was not derived locally from the selvages. Veins more than an order of magnitude thicker than those typically observed in the field would be necessary to accommodate the Na and K lost from the selvages during alteration. Therefore, regional transport of Na and K out of the local rock system is inferred. In addition, to account for the observed abundances of kyanite in the veins, large fluid‐rock ratios (102–103 m3fluid m−3rock) and time‐integrated fluid fluxes in excess of ∼104 m3fluid m−2rock are required owing to the small concentrations of Al in aqueous fluids. It is concluded that the quartz‐kyanite veins and their selvages were produced by regional‐scale advective mass transfer by means of focused fluid flow along a thrust fault zone. The results of this study provide field evidence for considerable Al mass transport at greenschist to amphibolite facies metamorphic conditions, possibly as a result of elevated concentrations of Al in metamorphic fluids due to alkali‐Al silicate complexing at high pressures.  相似文献   

19.
Amphibolites of the Post Pond Volcanics, south-west corner ofthe Mt. Cube Quadrangle, Vermont, are characterized by a greatdiversity of bulk rock types that give rise to a wide varietyof low-variance mineral assemblges. Original rock types arebelieved to have been intrusive and extrusive volcanics, hydrothermallyaltered volcanics and volcanogenic sediments with or withoutadmixtures of sedimentary detritus. Metamorphism was of staurolite-kyanitegrade. Geothermometry yields a temperature of 535 ± 20°C at pressures of 5–6 kb. Partitioning of Fe and Mg between coexisting phases is systematic,indicating a close approach to chemical equilibrium was attained.Relative enrichment of Fe/Mg is garnet > staurolite >gedrite > anthophyllite cummingtonite hornblende > biotite> chlorite > wonesite > cordierite dolomite > talc;relative enrichment in Mn/Mg is garnet > dolomite > gedrite> staurolite cummingtonite > hornblende > anthophyllite> cordierite > biotite > wonesite > chlorite >talc. between coexisting amphiboles varies as a function ofbulk Fe/Mg, which is inconsistent with an ideal molecular solutionmodel for amphiboles. Mineral assemblages are conveniently divided into carbonate+ hornblende-bearing, hornblende-bearing (carbonate-absent)and hornblende-absent. The carbonate-bearing assemblages allcontain hornblende + dolomite+ calcite + plagioclase (andesineand/or anorthite) + quartz with the additional phases garnetand epidote (in Fe-rich rocks) and chlorite ± cummingtonite(in magnesian rocks). Carbonate-bearing assemblages are restrictedto the most calcic bulk compositions. Hornblende-bearing (carbonate absent) assemblages occur in rocksof lower CaO content than the carbonate-bearing assemblages.All of these assemblages contain hornblende + andesine ±quartz + Fe-Ti oxide (rutile in magnesian rocks and ilmenitein Fe-rich rocks). In rocks of low Al content, cummingtoniteand two orthoamphiboles (gedrite and anthophyllite) are common.In addition, garnet is found in Fe-rich rocks and chlorite isfound in Mg-rich rocks. Several samples were found that containhornblende + cummingtonite + gedrite + anthophyllite ±garnet +chlorite + andesine + quartz + Fe-Ti oxide ±biotite. Aluminous assemblages contain hornblende + staurolite+ garnet ± anorthite/bytownite (coexisting with andesine)± gedrite ± biotite ± chlorite ±andesine ± quartz ± ilmenite. Hornblende-absentassemblages are restricted to Mg-rich, Ca-poor bulk compositions.These rocks contain chlorite ± cordierite ± staurolite± talc ± gedrite ± anthophyllite ±cummingtonite ± garnet ± biotite ± rutile± quartz ± andesine. The actual assemblage observeddepends strongly on Fe/Mg, Ca/Na and Al/Al + Fe + Mg. The chemistry of these rocks can be represented, to a firstapproximation, by the model system SiO2–Al2O3–MgO–FeO–CaO–Na2O–H2O–CO2;graphical representation is thus achieved by projection fromquartz, andesine, H2O and CO2 into the tetrahedron Fe–Ca–Mg–Al.The volumes defined by compositions of coexisting phases filla large portion of this tetrahedron. In general, the distributionof these phase volumes is quite regular, although in detailthere are a large number of phase volumes that overlap otherphase volumes, especially with respect to Fe/Mg ratios. Algebraicand graphical analysis of numerous different assemblages indicatethat every one of the phase volumes should shift to more magnesiancompositions with decreasing µH2O. It is therefore suggestedthat the overlapping phase volumes are the result of differentassemblages having crystallized in equilibrium with differentvalues of µH2O or µCO2 and that the different valuesmay have been inherited from the original H2O and CO2 contentof the volcanic prototype. If true, this implies that eithera fluid phase was not present during metamorphism, or that fluidflow between rocks was very restricted.  相似文献   

20.
FREY  MARTIN 《Journal of Petrology》1978,19(1):95-135
The unmetamorphosed equivalents of the regionally metamorphosedclays and marls that make up the Alpine Liassic black shaleformation consist of illite, irregular mixed-layer illite/montmorillonite,chlorite, kaolinite, quartz, calcite, and dolomite, with accessoryfeldspars and organic material. At higher grade, in the anchizonalslates, pyrophyllite is present and is thought to have formedat the expense of kaolinite; paragonite and a mixed-layer paragonite/muscovitepresumably formed from the mixed-layer illite/montmorillonite.Anchimetamorphic illite is poorer in Fe and Mg than at the diageneticstage, having lost these elements during the formation of chlorite.Detrital feldspar has disappeared. In epimetamorphic phyllites, chloritoid and margarite appearby the reactions pyrophyllite + chlorite = chloritoid + quartz+ H2O and pyrophyllite + calcite ± paragonite = margarite+ quartz + H2O + CO2, respectively. At the epi-mesozone transition,paragonite and chloritoid seem to become incompatible in thepresence of carbonates and yield the following breakdown products:plagioclase, margarite, clinozoisite (and minor zoisite), andbiotite. The maximum distribution of margarite is at the epizone-mesozoneboundary; at higher metamorphic grade margarite is consumedby a continuous reaction producing plagioclase. Most of the observed assemblages in the anchi-and epizone canbe treated in the two subsystems MgO (or FeO)-Na2O–CaO–Al2O3–(KAl3O5–SiO2–H2O–CO2).Chemographic analyses show that the variance of assemblagesdecreases with increasing metamorphic grade. Physical conditions are estimated from calibrated mineral reactionsand other petrographic data. The composition of the fluid phasewas low in XCO2 throughout the metamorphic profile, whereasXCH4 was very high, particularly in the anchizone where aH2Owas probably as low as 0.2. P-T conditions along the metamorphicprofile are 1–2 kb/200–300 °C in the anchizone(Glarus Alps), and 5 kb/500–550 °C at the epi-mesozonetransition (Lukmanier area). Calculated geothermal gradientsdecrease from 50 °C/km in the anchimetamorphic Glarus Alpsto 30 °C/km at the epi-mesozone transition of the Lukmanierarea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号