首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
冻土前期固结压力的试验研究   总被引:2,自引:0,他引:2  
胡伟  齐吉琳  马巍 《岩土力学》2009,30(5):1313-1316
前期固结压力 在土力学中占有重要的地位。对于融土, 是土受力历史的重要指标,与土的力学性质有着密切关系;对于冻土,由于冰和土颗粒骨架的联结使其具有一定的结构性,也应当具有类似前期固结压力的指标存在。以冻结青藏黏土为研究对象,对不同初始干重度和不同温度下的冻土试样进行 压缩试验,采用双对数法得到冻土的前期固结压力 。研究表明,这个指标尽管不同于融土前期固结压力的概念,但其对于冻土的力学性质同样具有重要意义。试验研究还发现,冻土前期固结压力与干重度和温度具有一定的关系。  相似文献   

2.
This paper involves an evaluation of a relationship describing the evolution in yield stress of unsaturated soils during hydraulic hysteresis, and an application of this relationship in an elasto-plastic framework to predict the compression curves of unsaturated soils under drained (free outflow of air and water with constant suction) or undrained (constant water content with no outflow of water and varying suction) conditions. The yield stress was quantified as the apparent mean effective preconsolidation stress obtained from compression tests reported in the literature on specimens that had experienced different hydraulic paths. It was observed that the preconsolidation stress does not follow a hysteretic path when plotted as a function of matric suction, but does when plotted as a function of the degree of saturation. Accordingly, an existing logarithmic relationship between the preconsolidation stress and matric suction normalized by the air entry suction was found to match the experimental preconsolidation stress results. This same relationship was also able to satisfactorily predict the trends in preconsolidation stress with degree of saturation by substituting the hysteretic soil–water retention curve (SWRC) into the place of the matric suction. The relationship between preconsolidation stress and suction was combined with an elasto-plastic framework to predict the compression curves of soils during drained compression, while the wetting-path relationship between preconsolidation stress and degree of saturation was combined with the framework to predict the compression curves of soils during undrained (constant water content) compression. A good match was obtained with experimental data from the literature, indicating the relevance of considering the hysteretic SWRC and preconsolidation relationships when simulating the behavior of unsaturated soils following different hydro-mechanical paths.  相似文献   

3.
Preconsolidation stress (σp) is the maximum effective stress that a soil has suffered throughout its life. From a geotechnical point of view, preconsolidation stress has a great importance because it separates elastic and reversible deformations from inelastic and only partially irreversible deformations and marks the starting point of high compressibility. This study calculates the preconsolidation stress for 139 undisturbed soil samples from the Vega Baja and Media of the Segura river (SE Spain), using the uniaxial consolidation test and applying the method proposed by Casagrande while using a novel analytical procedure proposed by Gregory et al. [Gregory, A.S., Whalley, W.R., Watts, C.W., Bird, N.R.A., Hallet, P.D., Whitmore, A.P., 2006. Calculation of the compression index and precompression stress from soil compression test data. Soil and Till. Res., 89, 45–57] to avoid subjective interpretations of maximum curvature point. The results show overconsolidation ratio (OCR — the ratio of preconsolidation stress to current natural overburden stress) values for the 10–15 m depth of soil varying from 2 to 14 and maximum preconsolidation stresses above 800 kPa. The main causes of calculated preconsolidation identified are desiccation due to seasonal drying and wetting cycles that have induced additional stresses always lower than 42 kPa for the more superficial samples. Water level decline due to the reduction of recharge suffered by the aquifer system during periods of drought and the uncontrolled withdrawal of water is considered to be the second cause of anomalous OCR values. This second cause induces low stresses to the more superficial layers (lower than 41 kPa) that can reach values higher than 150 kPa for the deeper layers for known water level decreases. In consequence, the soils of the Vega Baja and Media of the Segura river are highly overconsolidated for the first 5 m, decreasing gradually with depth to 10–15 m deep. For samples located deeper than 15 m the soils seem to be underconsolidated, probably due to the existence of confined aquifers that cause deviations from a hydrostatic and linear pore pressure model. This fact has a huge practical significance which implies that deformations affecting superficial layers are lower than those expected for deeper layers for the same load.  相似文献   

4.
Temporary ground freezing is a valuable technique for stabilizing soft soils during construction. It imparts large increases in strength and bearing capacity to most soils. However, freezing can cause significant changes in soil structure and density which can lead to adverse settlement during thaw.

Settlement of clay soils after freezing and thawing is the result of the suction forces that draw pore water to the freezing front. These suction forces cause an increase in the effective stress on the clay beneath the freezing front, and thus cause an overconsolidation of the clay. As these suction forces often exceed 1 atm, their direct measurement is not easy.

A technique for indirectly determining the maximum suction occurring during freezing is presented which utilizes the apparent memory that clay soils have for maximum past (preconsolidation) pressures. Suctions as large as 532 kN m−2 were observed after freezing and thawing a clay soil which was initially consolidated to 128 kN m−2.

The volume changes resulting from the freezing and thawing of clays were related to the plastic limit and were observed in the laboratory to be as high as 25%. If provisions are not made to account for these volume changes in a ground freezing project, considerable damage to structures can occur from settlement and the resulting stresses.  相似文献   


5.
To further our knowledge of the coupling between the hydraulic and mechanical behaviours of the swelling soils, this paper presents an experimental study on a bentonite/silt mixture using an osmotic odometer. A loading/unloading cycle was applied to samples with different initial dry densities (1.27, 1.48, and 1.55 Mg m− 3) at different constant suctions (0, 2, and 8 MPa). We noted that the initial state of the soils after compaction significantly influenced the values of the apparent preconsolidation stress p0(s), the virgin compression index λ(s), and the elastic compression index κ.These experimental results provided a sufficient database to interpret the mechanical behaviour of the swelling soil and define three yielding surfaces:
– the suction limit between micro- and macrostructure (sm/M) and the suction limit between nano- and microstructure (sn/m), which depend completely on the soil fabrics and the diameter separating the nano-, micro-, and macrostructure,
– the Loading Collapse (LC) curve, representing the preconsolidation stress variation as a function of suction,
– the Saturation Curve (SC), representing the variation of the saturation stress (Psat) as a function of suction.
In general, we can state that the increase of compaction pressure unified the LC and SC surfaces and decreased the (sm/M) value without modifying the (sn/m) value.  相似文献   

6.
本文借助于先进的多功能大型高速高压环剪试验机,通过进行不同应力历史、剪切速度和正应力等条件下的系列试验,对吉林长春地区广泛分布的超固结粉质黏土在快速大剪切位移条件下的力学响应特性进行了试验研究。试验结果显示,前期固结历史和剪切速度不仅对超固结粉质黏土的抗剪强度变化具有显著的影响作用,并且对于其峰后应变软化亦产生明显的影响。在相同剪切速率和正应力条件下,前期固结压力越大,其峰值强度和残余强度值越大。不同剪切速度下的试验结果表明,在具有相同应力历史的条件下,峰值强度和峰后应力降低随着剪切速度的增大而增大。剪切速度越快越有利于土应变软化的产生以及剪切面的形成。在快速大剪切条件下对长春地区超固结粉质黏土抗剪强度变化起主要作用的是剪切过程中土体结构的变化和剪切面的生成,而剪切过程中孔隙水的作用并不显著。  相似文献   

7.
The Schlinig fault at the western border of theÖtztal nappe (Eastern Alps), previously interpreted as a west-directed thrust, actually represents a Late Cretaceous, top-SE to -ESE normal fault, as indicated by sense-of-shear criteria found within cataclasites and greenschist-facies mylonites. Normal faulting postdated and offset an earlier, Cretaceous-age, west-directed thrust at the base of theÖtztal nappe. Shape fabric and crystallographic preferred orientation in completely recrystallized quartz layers in a mylonite from the Schlinig fault record a combination of (1) top-east-southeast simple shear during Late Cretaceous normal faulting, and (2) later north-northeast-directed shortening during the Early Tertiary, also recorded by open folds on the outcrop and map scale. Offset of the basal thrust of theÖtztal nappe across the Schlinig fault indicates a normal displacement of 17 km. The fault was initiated with a dip angle of 10° to 15° (low-angle normal fault). Domino-style extension of the competent Late Triassic Hauptdolomit in the footwall was kinematically linked to normal faulting.

The Schlinig fault belongs to a system of east- to southeast-dipping normal faults which accommodated severe stretching of the Alpine orogen during the Late Cretaceous. The slip direction of extensional faults often parallels the direction of earlier thrusting (top-W to top-NW), only the slip sense is reversed and the normal faults are slightly steeper than the thrusts. In the western Austroalpine nappes, extension started at about 80 Ma and was coeval with subduction of Piemont-Ligurian oceanic lithosphere and continental fragments farther west. The extensional episode led to the formation of Austroalpine Gosau basins with fluviatile to deep-marine sediments. West-directed rollback of an east-dipping Piemont-Ligurian subduction zone is proposed to have caused this stretching in the upper plate.  相似文献   


8.
A theoretical 3D model of a fault region includes a slip-dependent friction, tectonic loading from the sides, and deterministic, continuous time formulation of governing equations. The model reproduces such properties of real faults as earthquake nucleation, earthquake complex rupture and nonregular recurrence. In particular, it is observed that the style of faulting changes from one event to another. Since all parameters related to the constitutive law are fixed during computer simulations, it is concluded that interactions between fault segments are responsible for such behavior. Neither the constitutive law nor fault spatial heterogeneities solely create complexity; rather it is the whole interactive dynamics of the system that determines the character of its evolution. Results are illustrated by time variations of global (i.e., related to the state of the whole fault) functions, such as energy release rate, seismic moment release rate, tectonic stresses, and local characteristics, such as driving and cohesive stresses, slip rates, slip displacements and mutual relations between them.  相似文献   

9.
A. Lin  T. Ouchi  A. Chen  T. Maruyama   《Tectonophysics》2001,330(3-4):225-244
A nearly 100-km-long surface rupture zone, called Chelungpu surface rupture zone, occurred mostly along the pre-existing Chelungpu fault on the northwestern side of Taiwan, accompanying the 1999 Chi-Chi Ms 7.6 earthquake. The Chelungpu surface rupture zone can be divided into four segments based on the characteristics of co-seismic displacements, geometry of the surface ruptures and geological structures. These segments generally show a right-step en echelon form and strike NE–SW to N–S, and dip to the east with angles ranging from 50 to 85°. The co-seismic flexural-slip folding structures commonly occurred in or near the surface rupture zone from a few meters to a few hundreds of meters in width, which have an orientation in fold axes parallel or oblique to the surface rupture zone. The displacements measured in the southern three segments are approximately 1.0–3.0 m horizontally and 2.0–4.0 m vertically. The largest displacements were measured in the northern segment, 11.1 m horizontally and 7.5 m vertically, respectively. The amount of co-seismic horizontal shortening caused by flexural-slip folding and reverse faulting in the surface rupture zone is generally less than 3 m. It is evident that the co-seismic displacements of the surface rupture zone are a quantitative surface indicator of the faulting process in the earthquake source fault. The relations between the geometry and geomorphology of the surface rupture zone, dips of the co-seismic faulting planes and the striations on the main fault planes generated during the co-seismic displacement, show that the Chelungpu surface rupture zone is a reverse fault zone with a large left-lateral component.  相似文献   

10.
冻融作用对土工程性质影响的研究现状   总被引:32,自引:0,他引:32  
冻融过程中土结构受冷生作用的影响,可导致土的工程性质发生变化。在冻土地区进行路堑开挖、新消边坡的加固和路基修建时,由于新近暴露的土受到冻融风化作用,在相关的变形和稳定性分析中,选择土性参数时必须考虑土工程性质的变化。在查阅大量文献的基础上,从试验仪器和研究方法、冻融作用下土的物理性质和力学性质的变化及其机理等几个方面,对土的工程性质受冻融循环影响而改变的研究现状进行了总结和分析,列出了典型的研究成果。文献研究表明,土经过冻融后,渗透性会增大;松散土和密实土的密度具有不同的变化趋势;原状超固结土的结构性受到破坏,因而三轴试验的应力应变曲线峰值受到削弱,一维压缩试验中表现为前期固结压力降低;强度的变化则有诸多不同的试验结果。针对目前的研究现状并根据作者的相关工作,提出了进一步研究的思路。  相似文献   

11.
Structural geologists routinely undertake geological analyses, particularly studies of faulting, by assuming that applied stresses are the controlling parameters. An alternative view is the assumption that material velocities, incremental displacements, or total displacements are imposed on the system, with stresses then part of the material response to these imposed boundary conditions. In our view, taking velocities and displacements as independent variables in deformation and stresses as dependent variables requires fewer assumptions and is more consistent with the observed geology.  相似文献   

12.
Hasan Cetin   《Engineering Geology》2005,80(3-4):260-270
A Turkish Airlines (THY) Boeing 737-400 plane crashed into alluvial soils creating an approximately 13 m deep and 30 m wide crater near the village of Adatepe, Ceyhan in southern Turkey. Effects of the impact on the soils in and around the crater were investigated from both the geological and soil mechanics point of view.

The results show that the impact caused severe deformations in the soils in and around the crater. The soils deformed similar to metamorphic rocks seen at many terrestrial hypervelocity impact craters around the world and became overconsolidated up to a distance of about 10 m from the crater wall as a result of the impact.

Also, the crash was recorded as a 2.7 magnitude earthquake by a nearby microtremor seismograph which provided both the location (epicenter) and time of the crash which was not known immediately after the crash.  相似文献   


13.
Continental crust is displaced in strike-slip fault zones through lateral and vertical movement that together drive burial and exhumation. Pressure – temperature–deformation ( P–T–d ) histories of orogenic crust exhumed in transcurrent zones record the mechanisms and conditions of these processes. The Skagit Gneiss Complex, a migmatitic unit of the North Cascades, Washington (USA), was metamorphosed at depths of ∼25–30 km in a continental arc under contraction, and is bounded on its eastern side by the long-lived transcurrent Ross Lake fault zone (RLFZ). The P–T–d conditions recorded by rocks on either side of the RLFZ vary along the length of the fault zone, but most typically the fault separates high-grade gneiss and plutons from lower-grade rocks. The Ruby Mt–Elijah Ridge area at the eastern margin of the Skagit Gneiss exposes tectonic contacts between gneiss and overlying rocks; the latter rocks, including slivers of Methow basin deposits, are metamorphosed and record higher-grade metamorphism than in correlative rocks along strike along the RLFZ. In this area, the Skagit Gneiss and overlying units all yield maximum P–T conditions of 8–10 kbar at >650 °C, indicating that slices of basin rocks were buried to similar mid-crustal depths as the gneiss. After exhumation of fault zone rocks to <15 km depth, intrusion of granitoid plutons drove contact metamorphism, resulting in texturally late andalusite–cordierite in garnet schist. In the Elijah Ridge area of the RLFZ, an overlapping step-over or series of step-overs that evolved through time may have facilitated burial and exhumation of a deep slice of the Methow basin, indicating that strike-slip faults can have major vertical displacement (tens of kilometres) that is significant during the crustal thickening and exhumation stages of orogeny.  相似文献   

14.
Textural relationships and the trace element chemistry of accessory minerals and garnet can provide the linkage between in situ SHRIMP ages and quantitative pressure–temperature data that is required to decipher complex polymetamorphic and polydeformational histories. Application of these methods to lower amphibolite facies rocks of the Stewart River area, Yukon (Canada) yields robust new constraints on the tectonic evolution of central Yukon Tanana Terrane (YTT).
A TIMS U/Pb titanite age of 365–350 Ma is interpreted to date low- P metamorphism (M1) and D1 deformation associated with arc plutonism above an east-dipping subduction zone. Monazite inclusions in garnet porphyroblasts record a transition from low to high pressure (∼9 kbar and 600 °C) at c . 239 Ma. These data help to establish a c . 260–240 Ma tectonometamorphic event (M2–D2) reflecting intra-arc thickening during west-dipping subduction of Slide Mountain Ocean. Another transition from low- to high- P (M3–D3; 7.8 kbar and 595 °C), dated by c . 195–187 Ma monazite, is interpreted to reflect the change from regional contact metamorphism during arc plutonism to internal duplication of YTT during initial collision of YTT with the North American craton.
The Mt Burnham (north-eastern) region records a different history because of its proximity to later plutons and its late exhumation via extensional faulting. Monazite growth at 146 Ma dates ∼9 kbar metamorphism (M4), interpreted to reflect a previously unrecognized period of plutonism associated with auriferous quartz veins in the Klondike region. Monazite growth at 114–107 Ma reflects low- P (<4.6 kbar) contact metamorphism (M5) accompanying regional plutonism and extension.  相似文献   

15.
吴雪婷 《岩土力学》2013,34(6):1675-1680
固结系数在软土压缩过程中并非常数,其变化规律与土体的工程特性、先期固结压力、有效固结应力等因素有关。当固结应力小于土体的先期固结压力时( ),随着应力的增加,固结系数减小;当固结应力达到其先期固结压力时( ),固结系数取最小值;当固结应力超过先期固结压力后( ),随着应力的继续增加,淤泥固结系数又逐渐增大。温州淤泥的固结系数与固结应力之间存在显著的双对数(ln( 或 )- )线性相关性,其分段拟合公式在先期固结压力 的前后分为两段。利用“改进的门田法”求解的淤泥层在压缩过程中,固结系数的变化规律,进一步说明和验证了这一结论。利用双对数拟合公式可较准确推求整个加载过程中淤泥的固结系数,为固结沉降计算提供重要的参数。  相似文献   

16.
近年来,在对国内广泛分布的老粘性土、红土等土体的研究过程中发现,这些土均为"超固结土",其先期固结压力(Pc)值不仅与土的受荷历史有关,而且还与土的物质组成和结构特征有着十分密切的关系。研究结果表明,影响Pc值大小的因素很复杂,红土和下蜀土中对Pc值大小起决定作用的为游离氧化物的胶结连结,而黄土状土中土自重压力则为主导因素。可见土的先期固结压力并非唯一由上覆荷载所致。  相似文献   

17.
Initiation and formation of folds and the Kazerun high-angle fault zone, in the Zagros fold-and-thrust belt, were related to the continuing SW–NE oriented contraction that probably initiated in the Late Cretaceous, and intensified, starting in Miocene, when the Arabian and Eurasian plates collided. The contraction that led to folding and thrusting of the Phanerozoic sequence in the belt has led to the strike–slip reactivation of basement faults that formed during the Precambrian. Two major systems of fractures have developed, under the same regional state of contraction, during the folding and strike–slip faulting processes. Folding led to the formation of a system of fold-related fractures that comprises four sets of fractures, which include an axial and a cross-axial set that trend parallel and perpendicular to the confining fold axial trace, respectively, and two oblique sets that trend at moderate angles to the axial trace. Slip along high-angle, strike–slip faults formed a system of fractures in the damage zone of the faults (e.g., Kazerun), and deformed folds that existed in the shear zone by rotating their axial plane. This fault-related fracture system is made of five sets of fractures, which include the two sets of Riedel shear fractures (R and R′), P- and Y-shear fractures, and an extensional set.

Remote sensing analysis of both fracture systems, in a GIS environment, reveals a related kinematic history for folding outside of the Kazerun shear zone and faulting and deformation (fracturing and rotation of folds) within the Kazerun fault zone. Rotation of the folds and formation of the five sets of the fault-related fractures in the Kazerun shear zone are consistent with a dextral motion along the fault. The mean trends of the shortening directions, independently calculated for the fold- and fault-related fracture systems, are remarkably close (N53 ± 4°E and N50 ± 5°E, respectively), and are perpendicular to the general NW–SE trend of the Zagros fold-and-thrust belt. Although segments of the Kazerun fault are variably oriented within a narrow range, the angular relationships between sets of fault-related fractures and these segments remain constant.  相似文献   


18.
New petrological and microstructural data from various metaperidotite 'boudins' within large ductile shear zones in the Cabo Ortegal allochthonous complex in NW Spain have important implications for the tectonic models of the area. The peridotites (mylonitic garnet harzburgite, Ti-clinohumite and magnesite–olivine orthopyroxenite) contain mineral assemblages that equilibrated at high- to ultra-high-pressure metamorphic conditions as well as microstructures of tectonic origin formed at temperatures well above 800  °C. Olivine and orthopyroxene fabrics resulted from flow at high temperature (>1000  °C) and solid-state non-coaxial plastic flow at intermediate temperature (800–900  °C). Flow caused dynamic recrystallization and formation of moderate to strong lattice preferred orientations under low to moderate differential stresses and strain rates characteristic of upper mantle and deep crustal deformation. The microstructures and textural relationships suggest that the mylonitic garnet harzburgite represents mantle fragments with lithospheric and asthenospheric imprints, whereas the olivine orthopyroxenite resulted from serpentinite burial to depths where it acquired a characteristic high/ultra-high-pressure metamorphic signature. Both types of ultramafites converged to a common site in a subduction zone that was later incorporated during continental collision to the NW Iberian Massif as exotic, allochthonous complexes that record structural and metamorphic evidence of the earliest phases of the Hercynian orogeny.  相似文献   

19.
The Surduk loess section in Serbia provides a 20 m thick pedosedimentary record of the last interglacial–glacial climatic cycle (Upper Pleistocene). Based on optical dating, a chronostratigraphy could be established for the last climatic cycle, yielding the first numerical ages of a loess record from the middle Danube basin. Infrared-stimulated luminescence (IR-OSL) dating has been applied to the polymineral silt fraction using a multiple aliquot additive-dose protocol to determine the equivalent dose ( D E ). Within error limits, all age estimates are in stratigraphic order. Owing to the application of shine-plateau tests, the samples showed no evidence of insufficient bleaching. The Surduk loess section comprises three major periods of soil formation. Based on the IR-OSL chronostratigraphy, the lowermost pedocomplex is attributed to the Last Interglacial and to the Early Glacial (Marine Isotope Stage – MIS 5e to 5a). The middle part of the section exhibits a succession of weakly developed brown soils and a humic horizon, named 'Surduk soil', formed during MIS 3. On top of the section, recent soil formation is related to the Holocene. Thick loess deposits are preserved between these palaeosols and are attributed to the Lower and Upper Pleniglacials (MIS 4 and 2), respectively. Estimated mean sedimentation rates are 0.1–0.2 mm/yr for the last glacial cycle, with a strong increase to 0.6 mm/yr with onset of the Pleniglacial.  相似文献   

20.
To further our knowledge of coupling between the hydraulic cycles and mechanical behaviour of the swelling soils, this paper presents an experimental study on a bentonite/silt mixture using an odometer with suction controlled by the osmotic technique. A loading/unloading cycle was applied to each of the samples at different constant suctions (0, 2, 3 and 8 MPa). Moreover, successive wetting and drying cycles were applied under constant vertical stress at a suction range of 0 to 8 MPa, followed by a loading/unloading cycle at similar suctions (0, 2, 3 and 8 MPa). Finally, the compression curves of the aforementioned suctions with and without the application of suction cycles were compared, so as to analyse the influence of hydraulic cycles on the soil fabric and the mechanical parameters. It is observed that the wetting and drying cycles applied to both the micro- and macrostructure significantly influenced the virgin compression index λ(s), the apparent preconsolidation stress p0(s) and the elastic compression index values κ. However, the hydraulic cycles imposed only on the micro- or macrostructure induce negligible changes in the mechanical parameters of the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号