首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
In this paper the observed 1.4–1.6 s quasi-periodic oscillations in the spike radiation of the microwave outburst of 1981 May 16 are analysed in teras of MHD waves. We point out that the fast magnetoacoustic waves (“sausage” mode) propagating inside and outside a loop can modulate the magnetic field and the pitch angle distribution of the electron beams in the source region. The growth rate of electron-cyclotron-maser instability is then affected to give rise to the quasi-periodic oscillations. Quantitative estimates of relevant physical parameters are given.  相似文献   

2.
We present expressions which describe the angular displacement of radio sources due to refraction in a magnetized plasma. The main objective of the present paper is to take into account the combined effect of gradients of the electron density and the magnetic field. We use the geometrical optics approximation for the determination of the angular broadening of the radiation. The expressions obtained are applied to the case of the solar corona.  相似文献   

3.
The effects, hitherto not treated, of the temperature and the number density gradients, both in the parallel and the perpendicular direction to the magnetic field, of O VI ions, on the MHD wave propagation characteristics in the solar North Polar Coronal Hole are investigated. We investigate the magnetosonic wave propagation in a resistive MHD regime where only the thermal conduction is taken into account. Heat conduction across the magnetic field is treated in a non‐classical approach wherein the heat is assumed to be conducted by the plasma waves emitted by ions and absorbed at a distance from the source by other ions. Anisotropic temperature and the number density distributions of O VI ions revealed the chaotic nature of MHD standing wave, especially near the plume/interplume lane borders. Attenuation length scales of the fast mode is shown not to be smoothly varying function of the radial distance from the Sun (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The first part of this article presents an analytic discussion of the linear properties of magnetohydrodynamic (MHD) wave propagation. Then, with a 2-dimensional, time-dependent, compressible MHD simulation subject to a self-consistent non-isothermal, non-uniform initial state, we study numerically the global propagation process following an initial pressure pulse applied at the base of the chromosphere. Our numerical results indicate that, if the pulse is applied near the pole, there are two modes, one fast, one slow of magnetoacoustic waves; whereas if the pressure pulse is applied near the equator, there is a fast mode and a standing disturbance located near the source. These results may help interpret the wave events observed by SOHO/EIT.  相似文献   

5.
The effect of radiation losses on the dispersion and damping of magnetohydrodynamic waves in the solar corona is studied. The conditions are determined under which radiation losses are most appreciable. A damping of kink modes of coronal loops with plasma temperatures within 106–106.3 K and 106.3–107 K are compared. It is concluded that the radiation damping dominates in the temperature range 106–106.3 K, which can cause the observed fast damping of kink oscillations of coronal loops. Radiation losses should be taken into account in full magnetohydrodynamic equations with radiative transfer.  相似文献   

6.
We propose a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona. We consider that a large number of small scale shock waves can be present in the solar corona, as suggested by recent observations of polar coronal jets by the Hinode and STEREO spacecraft. The heavy ion energization mechanism is, essentially, the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E=−(1/c)V ×B. The acceleration due to E is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T?T, which can excite ion cyclotron waves. Also, heating is more than mass proportional with respect to protons, because the heavy ion orbit is mostly upstream of the quasi-perpendicular shock foot. The observed temperature ratios between O5+ ions and protons in the polar corona, and between α particles and protons in the solar wind are easily recovered. We also discuss the mechanism of heavy ion reflection, which is based on ion gyration in the magnetic overshoot of the shock.  相似文献   

7.
The problem of phase mixing of shear Alfvén waves is revisited taking into account dissipative phenomena specific for the solar corona. In regions of space plasmas where the dynamics is controlled by the magnetic field, transport coefficients become anisotropic with transport mechanism having different behavior and magnitude depending on the orientation with respect to the ambient magnetic field. Taking into account realistic values for dissipative coefficients we obtain that the previous results derived in context of torsional Alfvén wave phase mixing are actually heavily underestimated so phase mixing cannot be used to explain the damping of torsional Alfvén waves and heating of open coronal structures. The presented results indicate that in order for phase mixing to still be a viable mechanism to explain heating or wave damping unrealistic assumptions have to be made. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
For the rising branch of Cycle 22, 1987 January—1989 November, we plot the daily total flux S at each of the five wavelengths 2.0, 3.4, 6.0, 10.7 and 21.2 cm against the apparent sunspot area of the dominant sunspot Ay and find that, for several large active areas, the locus is located below the average regression line, and the increase in the radio flux is insignificant compared to the increase in the sunspot area.  相似文献   

9.
At MHD scales density fluctuation in the solar wind generally have a relative amplitude less than 0.1. The nearly incompressible MHD theory would seem then appropriate to describe a major part of the compressive turbulence at these scales. As a test of the theory, we focus on the scaling properties of density fluctuations with turbulent Mach numbers and on the level of correlation between density and temperature fluctuations. Our findings do not appear in favour of an extended applicability of the nearly incompressible theory to MHD compressive turbulence in the solar wind.  相似文献   

10.
Workers in the field of magnetohydrodynamics (MHD) have been interested in the hypothesis that observed solar activities can be utilized in a deterministic way to predict the bulk flow consequences of these activities in the three-dimensional heliosphere. Exploration of this hypothesis, using the conventional/classic initial boundary value approach, will be reviewed against the background of basic, ideal (except for shocks) one-fluid approximations. This work has been divided into two parts: near-Sun simulations in two dimensions of coronal mass ejections (CMEs) as well as interplanetary simulations in 2D and 3D of propagating shocks. In the latter case, the flows behind the shocks should be thought of as interplanetary ICMEs, i.e., the interplanetary, evolutionary consequences of the near-Sun simulations.Initialization of these simulations has been based on observations (optical, soft X-ray, radio) from both ground-and space-based instruments. Simulation outputs have been compared within situ plasma and field observations and interplanetary scintillations (IPS). Improvements in the initialization procedures — spatial/temporal variations of solar plasma and field parameters at the coronal base — are expected from YOHKOH, SOHO, CORONAS-I, and TRACE experiments. Ground truth observations from WIND, SOHO, ACE, and INTERBALL experiments should then be compared with three-dimensional MHD outputs in tests of the fluid hypothesis noted above.  相似文献   

11.
A necessary and a sufficient condition are derived for the ideal magnetohydrodynamic stability of any 3D magnetohydrostatic equilibrium using the energy method and incorporating photospheric line-tying. The theory is demonstrated by application to a simple class of theoretical 3D equilibria. The main thrust of the method is the formulation of the stability conditions as two sets of ordinary differential equations together with appropriate boundary conditions which may be numerically integrated along tied field lines one at a time. In the case of the shearless fields with non-negligible plasma pressure treated here the conditions for stability arenecessary and sufficient. The method employs as a trial function a destabilizing ballooning mode, of large wave number vector perpendicular to the equilibrium field lines. These modes may not be picked up in a solution of the full partial differential equations which arise from a direct treatment of the problem.  相似文献   

12.
13.
Using a complete non-local convection theory, we carried out the theoretical calculations of 7Li depletion of the solar convective envelope models with different convective parameters c1 and c2, and got a model of the solar convection zone consistent with the observed 7Li abundance and the depth of the solar convection zone determined by helioseismic techniques. The overshooting distance of effective non-local convective mixing of 7Li is very extensive, which is about 1.07HP or 0.09R. However, the super-radiative temperature zone is much narrower, and it is only 0.20HP or 0.016R.  相似文献   

14.
During a balloon flight in France on September 13, 1971, at altitude 32 000 m, the solar corona was cinematographed from 2 to 5R during 5 hr, with an externally occulted coronagraph.Motions in coronal features, when they occur, exhibit deformations of structures with velocities not exceeding a few 10 km s–1; several streamers were often involved simultaneously; these variations are compatible with magnetic changes or sudden reorganizations of lines of forces.Intensity and polarization measurements give the electron density with height in the quiet corona above the equator. Electron density gradient for one of the streamers gives a temperature of 1.6 × 106 K and comparisons with the on-board Apollo 16 coronal observation of 31 July, 1971 are compatible with the extension of this temperature up to 25 R bd.Three-dimensional structures and localizations of the streamers are deduced from combined photometry, polarimetry and ground-based K coronametry. Three of the four coronal streamers analysed have their axis bent with height towards the direction of the solar rotation, as if the upper corona has a rotation slightly faster than the chromosphere.  相似文献   

15.
We discuss a model for the formation of the chromospheric Ca ii K line which does not make the usual assumption of complete redistribution. Using a physically reasonable scattering model, we find significant departures due to the frequency dependence of the line source function, particularly in the relative intensity and centre-to-limb behaviour of the K1 parts of the line and in the asymmetry produced by differential velocity fields. We conclude that the frequency dependence of the K line source function must be considered in quantitative models for the formation of the K line.  相似文献   

16.
The polarimetric survey of electrons in the K-corona initiated at Pic-du-Midi and Meudon Observatories in 1964 now covers a full solar cycle of activity. The measurements are photometrically calibrated in an absolute scale.In June 1967 a persistent coronal feature was fan-shaped as a lame coronale above quiescent prominences. We deduce an electron density of N 0 = 1.5 × 108 at 60 000 km above the photosphere, a total number of 14 × 1039 electrons, a hydrostatic temperature of 1.7 × 106 K, and a total thermal energy 3N eKT = 1.0 × 1031 ergs. When a center of activity appeared, a major localized condensation developed to replace the old elongated feature, with N 0 = 4.5 × 108, a total of 4.5 × 1039 electrons and the same temperature of 1.7 × 106 K.Also, a fan-shaped feature of exceptional intensity was analysed on 8 September 1966, with N 0 = 6 × 108 and a total of 24 × 1039 electrons.Fan-shaped features are frequent above quiescent prominences. They degenerate above a height of 2R into thinner isolated columns or blades with temperatures also around 1.7 × 106 K.  相似文献   

17.
The MHD instabilities of a temperature-anisotropic coronal plasma are considered. We show that aperiodic mirror instabilities of slow MHD waves can develop under solar coronal conditions for weak magnetic fields (B < 1 G) and periodic ion-acoustic instabilities can develop for strong magnetic fields (B > 10 G). We have found the instability growth rates and estimated the temporal and spatial scales of development and decay of the periodic instability. We show that the instabilities under consideration can play a prominent role in the energy balance of the corona and may be considered as a large-scale energy source of the wave coronal heating mechanism.  相似文献   

18.
G. Noci 《Solar physics》1981,69(1):63-76
The flows in a coronal magnetic arch associated with a pressure difference between the footpoints are investigated. Steady flows are of different types: always subsonic; subsonic in one branch of the arch, supersonic in the second; subsonic-supersonic with stationary shocks which adjust the flow to the boundary conditions in the second footpoint. The large velocity increase along the loop in subsonic-supersonic flows is associated with a large density decrease. A velocity drop and a density jump occur across the shock. The emission of such arches in coronal lines (625 of Mg x and 499 of Si xii) is calculated. It is suggested that the intensity drop along the axis observed in some UV loops is due to the density drop associated with subsonic-supersonic flows.  相似文献   

19.
Model calculations of plasma drifts in the solar corona were performed. We established that only drifts in crossed fields could result in velocities V of several hundred kilometers per second. Such velocities are typical of coronal mass ejections (CMEs). We derived an analytic expression for V where n, the expansion harmonic of the magnetic-field strength, varies with time. As follows from this expression, V is a power function of the distance with index (2?n) and the radial component changes sign (n?1) times in the latitude range from ?π/2 to +π/2. We found that if the magnetic dipole moment varies with time, the similarity between the spiral structures of coronal plasma is preserved when they displace within several solar radii and the density gradient at the conical boundaries increases (the apparent contrast is enhanced). There is a correspondence between the inferred model effects and the actually observed phenomena that accompany CMEs.  相似文献   

20.
N. D'Angelo 《Solar physics》1969,7(2):321-328
The suggestion is advanced that heating of the solar corona results from Landau damping of ion-acoustic waves generated in the motion of photospheric granules. Laboratory experiments relevant to the question of corona heating are discussed, together with the available observational information on the extent of energy deposition in the corona.Of the European Space Research Organization (ESRO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号