首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The relation between the average magnetic fieldB, the angular velocity , and the periodP of stellar activity cycles is studied. For the calculations we have used Leighton's (1969) model for the solar cycle with the additional assumption that the differential rotation and the cyclonic turbulence (Parker, 1955) (that is the sunspot tilt or the -effect) are both proportional to . We then find thatB is roughly proportional to and thatP decreases with increasing . The period of the solar cycle increases therefore with the age of the Sun.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

2.
3.
Recent theories of the solar cycle and of coronal heating strongly suggest that solar cycle variations of different quantities (i.e. sunspots, coronal green line, etc.) ought not to be expected to be in phase with one another. In agreement with this notion we note that the shape of the corona typical of a maximum eclipse occurs 1.5yr before sunspot maximum, compared with 2 yr as might be expected from Leighton's standard model. Further, we argue that the phase of the solar wind cycle can be determined from geomagnetic observations. Using this phase, a solar cycle variation of 100 km s–1 in the solar wind velocity and 1 in the magnetic field intensity becomes apparent. In general, the solar wind cycle lags the coronal-eclipse-form cycle by 3 yr, compared with the 2 yr that might be expected from model calculations.  相似文献   

4.
5.
, . . . .
Some asymptotic solutions in the restricted problem of three bodies by L. G. Lukjanov.
Some particular solutions of the plane restricted problem of three bodies in the form of Liapunov's series are obtained. These solutions asymptotically approach the Lagrange solutions. Convergence is proved.
  相似文献   

6.
Recently, Wheatland and Litvinenko (2001) have suggested that over the solar cycle both the flaring rate and the magnetic free energy in the corona lag behind the energy supply to the system. To test this model result, we analyzed the evolution of solar flare occurrence with regard to sunspot numbers (as well as sunspot areas), using H flare data available for the period 1955–2002, and soft X-ray flare data (GOES 1–8 Å) for the period 1976–2002. For solar cycles 19, 21, and 23, we find a characteristic time lag between flare activity and sunspot activity in the range 1015 months, consistent with the model predictions by Wheatland and Litvinenko (2001). The phenomenon turns out to be more prominent for highly energetic flares. The investigation of solar activity separately for the northern and southern hemisphere allows us to exclude any bias due to overlapping effects from the activity of both hemispheres and confirms the dynamic relevance of the delay phenomenon. Yet, no characteristic time lag >0 is found for solar cycles 20 and 22. The finding that in odd-numbered cycles flare activity is statistically delayed with respect to sunspot activity, while in even-numbered cycles it is not, suggests a connection to the 22-year magnetic cycle of the Sun. Further insight into the connection to the 22-year magnetic cycle could possibly be gained when a 22-year variation in the energy supply rate is taken into account in the Wheatland and Litvinenko (2001) model. The existence of a 22-year modulation in the energy supply rate is suggested by the empirical Gnevyshev – Ohl rule, and might be caused by a relic solar field.  相似文献   

7.
The velocity field has been mapped for 42 min in an area 80 by 85 containing a unipolar sunspot. Apparent shifts of Fe i 5233 were measured photoelectrically using a rectangular scanning aperture 1.6 × 4.0. The sunspot did not exert a marked influence on the generally random pattern of oscillations at a period of 300 s. Discrete periods of oscillation both longer and shorter than 300 s were excited within the enhanced magnetic field boundaries of this spot. Umbral oscillations at periods near 180 s were detected in agreement with independent observations of the same spot during the previous solar rotation.NRC Postdoctoral Fellow, 1969–71.  相似文献   

8.
. - . . , . - . - , , , -. ., , .
The structure of rotating magnetic polytropes is considered in Roche approximation. Investigation of the influence of poloidal as well as toroidal magnetic fields on the conditions of the beginning of matter outflow due to rotational instability is carried out. The influence of the turbulent convection and twisting of magnetic force-lines on the time of smoothing of differential rotation is considered. The estimate of the magneto-turbulence energy generated by differential rotation is presented. Both maximum possible energy output and duration of the quasi-statical evolution phase up to the appearance of hydrodynamic instability due to the effects of general relativity are calculated for supermassive magnetic polytropes of index three with uniform or differential rotation. The radius-mass relation is obtained for supermassive differentially-rotating magnetic polytropes referring to the longest part of the quasi-statistical evolution stage; some consequences are pointed out, including the period-luminosity relation.The evolution of the considered models of supermassive rotating magnetic polytropes with different character of rotation and different geometry of a magnetic field is discussed.The results obtained are summarized in the last section.


English translation will appear in the next issue ofAstrophys. Space Sci.

Receipt delayed by postal strike in Great Britain  相似文献   

9.
2800 Mgii (. 1). (N +/N 11000) , , (N +/N 110). , . —, , . — . : ; 0.002 1 , 0.1 ; () 100 –3; ; ; , 10 ; 10–4 1 . 2800 Mgii .  相似文献   

10.
11.
Javaraiah  J.  Komm  R.W. 《Solar physics》1999,184(1):41-60
We have looked for periodicities in solar differential rotation on time scales shorter than the 11-year solar cycle through the power- spectrum analysis of the differential rotation parameters determined from Mt. Wilson velocity data (1969–1994) and Greenwich sunspot group data (1879–1976). We represent the differential rotation by a set of Gegenbauer polynomials (()= + (5sin2–1)+ (21sin4–14sin2+1)). For the Mt. Wilson data, we focus on observations obtained after 1981 due to the reduced instrumental noise and have binned the data into intervals of 19 days. We calculated annual averages for the sunspot data to reduce the uncertainty and corrected for outliers occuring during solar cycle minima. The power spectrum of the photospheric mean rotation , determined from the velocity data during 1982–1994, shows peaks at the periods of 6.7–4.4 yr, 2.2 ± 0.4 yr, 1.2 ± 0.2 yr, and 243 ± 10 day with 99.9% confidence level, which are similar to periods found in other indicators of solar activity suggesting that they are of solar origin. However, this result has to be confirmed with other techniques and longer data sets. The 11-yr periodicity is insignificant or absent in . The power spectra of the differential rotation parameters and , determined from the same subset, show only the solar cycle period with a 99.9% confidence level.The time series of determined from the yearly sunspot group data obtained during 1879–1976 is very similar to the corresponding time series of . After correcting for data with large error bars (occurring during cycle minima), we find periods, which are most likely harmonics of the solar cycle, such as 18.3 ± 3.0 yr and 7.5 ± 0.5 yr in and confirmed these and the 3.0 ± 0.1 yr period in . The original time series show in addition some shorter periods, absent in the corrected data, representing temporal variations during cycle minimum. Given their large error bars, it is uncertain whether they represent a solar variation or not. The results presented here show considerable differences in the periodicities of and determined from the velocity data and the spot group data. These differences may be explained by assuming that the rotation rates determined from velocity and sunspot data represent the rotation rates of the Sun's surface layers and of somewhat deeper layers.  相似文献   

12.
13.
The purpose of the present article is to analyze the solar cycles from the point of view of the large-scale surface magnetic field (LSMF) polarity distributions. Using synoptic charts of the LSMF for the 1870–1991 time interval at maxima and minima and the spherical harmonic analysis of the polarity distributions, a connection between magnetic cycles has been found. The weight of the large-scale sectoral mode (m = 1) in the common LSMF polarity distribution at minima of the sunspot cycle is the source of sunspot activity at maxima after 16–18 years. The connections found suggest that surface LSMFs have a dual nature - the main source below the convective zone and a secondary source (sunspot production). The sunspot production has no visible influence on the LSMF cycles.  相似文献   

14.
Sunspot associated H-flares and microwave bursts occurring during the period 1972 to 1974 have been examined in relation to the magnetic strength and configurations of the sunspots and sunspot groups (abbreviated as spots). Important results obtained are: (i) percentage occurrences of flares exceeds those of microwave bursts up to a magnetic field strength of 2000 G while the reverse is true for higher field strength of spots, (ii) flare productivity (average number of flares per spot) and also burst productivity are comparatively higher in the case of and types of spots than in the case of other types of spots, (iii) the above productivities are predominantly high when magnetic configuration of spots changes during their life time, and (iv) impulsive type of microwave bursts are more associated with spots having changing type of magnetic configuration.  相似文献   

15.
16.
17.
1937 - (, 1938). , , , , . , . . (, 1938), , . - (, 1938; Szebehely, 1967)., , . . - (, 1938), . — — . , , . , . . , . , , . . (, 1944). , .
In 1937, the Celestial Mechanics and Cosmogony section of the Sternberg State Astronomical Institute undertook the task of evaluating the Gylden-Moulton hypothesis on the origin of the Gegenshein from the standpoint of celestial mechanics. That investigation, which the authors themselves considered preliminary, contains nonetheless a series of important results. For example, G. N. Duboshin showed that in the planar, circular, restricted three-body problem, periodic motion of finite amplitude in the neighborhood of a collinear libration point is unstable according to Lyapunov's criterion both in the proper and in the orbital sense. The latter result is incompatible with the above named hypothesis, and thus appears as one of the serious objections among the many known negative conclusions relative to the existence of the Gylden-Moulton cluster.Unfortunately, most of the specific problems which arose in the above named research have not been considered since. One of these, the problem of the stability of three-dimensional periodic orbits in the neighborhood of a collinear libration point is solved in the present paper, within the limits of the three-dimensional, circular, restricted, three-body problem. Major attention is given to the investigation of stability in the orbital sense, since in the proper sense all orbits are unstable according to Lyapunov theory. It is shown that in order to resolve the question of stability, it is sufficient to consider the equations in their variational form. Analysis of the roots of the corresponding characteristic equations determines the orbital stability of planar and three-dimensional solutions, which later can be confirmed by calculation of the characteristic exponents appearing in the periodic solutions of the N. A. Artemiev method. Finally, the possibility of conditional stability in the linear approximation is proved.
  相似文献   

18.
Measurements of the Nimbus-7 and Solar Maximum Mission satellites reported temporary large decreases of the solar constant of the order of a few tenths of a percent on a time-scale from days to weeks. Our investigations show that these decreases were caused by active sunspot groups with fast development and complex structure. This connection between the solar constant variation and the appearance of the active groups seems to be more clear in the maximum of the solar activity. At the time of the solar minimum, mainly in the second part of 1984, there were not any active sunspot groups practically on the solar disk, the value of the solar constant only fluctuated around its mean without large variation. The results of time series analyses show that the periodicity of the solar constant values, of young and active spot areas was nearly 23.5 days in 1980, which increases to 28 days towards the minimum of the solar cycle till 1983. During this time interval the main periodicity of the old, passive spot areas was around 28 days. In 1984, at the time of the solar minimum, there were not any obvious periodicities practically in the projected areas of the different types of the sunspot groups.  相似文献   

19.
A statistical analysis of the deviations of the sideral angular rotation velocities () of single sunspot groups from the averaged rotation curve , shows that positive deviations tend to be greater than negative ones: we can therefore deduce the existence of prevalent westward shifts in the solar atmosphere. This effect is only partially due to the sunspot group proper motions at the beginning of their evolution, and it could indicate the prevalence of westward currents in the solar photosphere.  相似文献   

20.
In a two-component cycle, the generation of the dipole field by a separate mechanism as well as the strong link occurring, with a 5–6-yr delay, between the sunspot cycle and the preceding dipole cycle, sets in new terms the problem of the mechanisms at the origin of the solar cycle. In this paper, from various series of synoptic solar data, we identify some of the mechanisms to incorporate in a model of a two-component solar cycle. The first one concerns the dipole field which is not a surface phenomenon. We establish the cyclic behaviour and the various properties of the dipole-field sources which are deep-seated in the solar interior and have a rigid rotation of about 27 days. We identify two cyclic phenomena which, in each hemisphere, link with a 5–6-yr delay, the dipole field generation which occurs at high latitudes, to the bipolar field emergence occurring at sunspot latitudes. They are the signatures of a coupling mechanism taking place deep in the solar interior. Then we study the constraints imposed on the mechanisms of the sunspot field generation both by a two-component cycle and by new observational results. These last ones concern the links occurring between the birth of new sunspot groups and the occurrence of pre-existing features of the photospheric field and of pivot-points in rigid rotation at 27.3 days.Our final discussion is devoted to a first sketch of the distribution of the relevant mechanisms among separate regions of the convective zone. Unfortunately neither the helioseismology, nor our data analysis has yet supplied us with appropriate pieces of information for building a physical model of this two-component cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号