首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The impact of past mining activities on the quality of groundwater and surface water has been investigated in the mining district of La Carolina (southern Spain, province of Jaén), a region characterised by the presence of mineralisations of Pb–Ag, Cu and Fe sulphides and Ba sulphates. The chemistry of waters from flooded galleries, shafts and drainage adits has been compared with that of surface waters in the same area. Generally, waters present neutral pH, since carbonates neutralise the acidity produced by the oxidation of Fe-bearing sulphide minerals in the mine impacted water. Despite of this natural attenuation process, in most of the cases, the mine groundwater is of low quality and shows high dissolved SO4 (up to 3.7 g/l), Fe and Mn contents (tens to hundreds mg/l), exceeding the limit established by the guidelines of the World Health Organization for drinking water. Generally, the surface waters are of the sulphate calcium–magnesium to magnesium types, with moderate mineralisation. Post-rebound mine waters caused degradation of receiving watercourses in which the Fe contents are usually high, with values close to 3 g/l, and the mineralisation is greater as the channels run down in the mining zone. During dry seasons a considerable increase of salts and metals dissolved in stream waters was found, due to the decreasing contributions by run-off in this semiarid region, whereas the abandoned mine discharges remained practically constant.  相似文献   

2.
Hand-pump wells in the Tarkwa gold mining district and the geologically similar Bui area were chemically analysed and compared in an effort to determine whether groundwaters in the Tarkwa area have been affected by mining. Significant chemical differences attributed to mine water discharges have been observed in streams in the Tarkwa area. Groundwater chemistry from hand-pump wells in Tarkwa and Bui areas reveal similar hydrochemical facies, predominantly Ca–Na–Mg–HCO3–Cl. However, except for SO42–, ionic concentrations of groundwaters from Bui are greater than those from Tarkwa probably due to differences in (1) water availability during sedimentation (2) water-rock interactions and/or residence times for water. No demonstrable impact of mining on groundwaters from hand-pumped wells in the Tarkwa area has been noted. Hydrogeological inference suggests that the main streams which receive mine water discharges are both gaining and are groundwater divides. The overwhelming majority of population centres and mining operations are located on opposite sides of these groundwater divides, therefore, it is unlikely aquifers tapped for drinking by these communities would be affected by mining.  相似文献   

3.
The assessment of groundwater quality and its environmental implications in the region of the abandoned Cunha Baixa uranium mine (Central Portugal) was carried out from 1995 to 2004. Shallow groundwater is the major water supply source for irrigation in the neighbourhood of Cunha Baixa village. Water samples from the mine site as well as from private wells were collected in order to identify the mining impact on water composition, the extent of contamination and the seasonal and temporal groundwater quality variations. Some of the sampled private wells contain waters having low pH (<4.5–5) and high values of EC, TDS, SO4, F, Ca, Mg, Al, Mn, Ni, U, Zn and 226Ra. The wells located through the ESE–WSE groundwater flow path (1 km down gradient of the mining site) display the most contaminated water. In the summer season, the levels of SO4, Al, Mn, and U were 50–120 times higher than those registered for uncontaminated waters and exceeded the quality limits for irrigation purposes, presenting soil degradation risks. Nevertheless, this study indicates that groundwater contamination suffered a small decrease from 1999 to 2004. The bioaccumulation of toxic metals such as Al, Mn, and U within the food chain may cause a serious health hazard to the Cunha Baixa village inhabitants.  相似文献   

4.
The present study assesses the impact of coal mining on surface and groundwater resources of Korba Coalfield, Central India. Accordingly, water samples collected from various sources are analyzed for major ions, trace elements, and other mine effluent parameters. Results show that the groundwater samples are slightly acidic, whereas river water and mine water samples are mildly alkaline. Elevated concentrations of Ca2+, Na+, HCO3 ?, and SO4 2? alongside the molar ratios (Ca2++Mg2+)/(SO4 2?+HCO3 ?) <1 and Na+/Cl? >1 suggest that silicate weathering (water-rock interaction) coupled with ion exchange are dominant solute acquisition processes controlling the chemistry of groundwater in the study area. The overall hydrogeochemistry of the area is dominated by two major hydrogeochemical facies (i.e., Ca–Cl–SO4 and Ca–HCO3). Analysis of groundwater and river water quality index (GRWQI) elucidates that majority (82%) of samples are of “excellent” to “good” category, and the remaining 12% are of “poor” quality. Similarly, the effluent water quality index (EWQI) indicates that 6 out of 8 samples belong to excellent quality. Concentration of trace element constituents such as As, Zn, Cu, Cr, and Cd is found to be well within the stipulated limits for potable use, except for Fe, Mn, and Pb. Suitability of water samples for irrigation purpose, established using standard tools like Wilcox and USSL diagrams, reveal “excellent to permissible” category for majority of the samples. The present study also substantiates the effectiveness of the measures implemented for the treatment of mine effluent water.  相似文献   

5.
With depleted coal resources or deteriorating mining geological conditions, some coal mines have been abandoned in the Fengfeng mining district, China. Water that accumulates in an abandoned underground mine (goaf water) may be a hazard to neighboring mines and impact the groundwater environment. Groundwater samples at three abandoned mines (Yi, Er and Quantou mines) in the Fengfeng mining district and the underlying Ordovician limestone aquifer were collected to characterize their chemical and isotopic compositions and identify the sources of the mine water. The water was HCO3·SO4-Ca·Mg type in Er mine and the auxiliary shaft of Yi mine, and HCO3·SO4-Na type in the main shaft of Quantou mine. The isotopic compositions (δD and δ18O) of water in the three abandoned mines were close to that of Ordovician limestone groundwater. Faults in the abandoned mines were developmental, possibly facilitating inflows of groundwater from the underlying Ordovician limestone aquifers into the coal mines. Although the Sr2+ concentrations differed considerably, the ratios of Sr2+/Ca2+ and 87Sr/86Sr and the 34S content of SO42? were similar for all three mine waters and Ordovician limestone groundwater, indicating that a close hydraulic connection may exist. Geochemical and isotopic indicators suggest that (1) the mine waters may originate mainly from the Ordovician limestone groundwater inflows, and (2) the upward hydraulic gradient in the limestone aquifer may prevent its contamination by the overlying abandoned mine water. The results of this study could be useful for water resources management in this area and other similar mining areas.  相似文献   

6.
The paper discusses the ionic sources and chemical quality of the waters (surface and groundwater) around the Tehri reservoir in Uttarakhand, Garhwal, Himalaya, for drinking and irrigation purposes. The main Bhagirathi river, tributary streams and springs and groundwater are the main sources of water for the reservoir and inhabitant living around it. Fifty-two water samples were collected from springs, handpumps (borewell) and streams and were analysed for major ions. The pH is varying from 6.8 to 8.6 and EC from 28 to 820 μS/cm. The chemical composition of water is dominated by Ca, Mg and HCO3. The high ratio of Ca + Mg/Na + K and low ratio of Na + K/TZ indicate dominance of carbonate dissolution as the main solute acquisition process in this part of Lesser Himalaya. The trilinear and X–Y plots suggest less contribution from silicate weathering and anthropogenic activities. The excess of Na over Cl indicating much of the alkalis in the waters of Tehri area have source other than precipitation possibly from silicate weathering. Recharged by meteoric water, the quality of water in the study area is controlled essentially by chemical processes occurring between water and lithology and locally altered by human activities. Among the trace metals the concentration of Fe at few locations has marginally exceeded the WHO and BIS standards of drinking water. The analytical result computed from various water quality indices indicate fairly good quality of water for both drinking and irrigation purposes. The factor analysis performed on the major ion data indicate two factors are the most important affecting the water quality of the area.  相似文献   

7.
Osheepcheon Creek running through the Dogyae area is being polluted by the influx of the abandoned coal mine drainage. Generally, the more polluted water has lower pH and Eh and higher conductivity values. The concentrations of Mg, Ca, Fe, SO4, and some trace elements, such as Cd, Co, Cr, Mo, Ni, Pb, Rb, Sr, U and Zn, are tens to hundreds of times more concentrated in the abandoned coal mine drainage than in the unpolluted streamwater. However, most immobile toxic pollutants from the mine drainage are quickly removed from the streamwater by the precipitation of amorphous Fe hydroxide and sorption on the precipitated Fe hydroxide. The fast removal of the pollutants from the streamwater maintains the water quality of the creek as acceptable at most places along the stream path, except where the abandoned coal mine drainage flows in. However, the creek has the potential of deteriorating quickly if the mine drainage is allowed to be continuously combined with the streams. A function of pH, Eh, and conductivity has been developed with discriminant function analysis for the purpose of easy, fast, and inexpensive measurement of the degrees of pollution of the streams. The estimated pollution of the streams with the discriminant function are consistent with what the chemical compositions of the water samples indicate. The pollution map of the study area was constructed from the calculated scores with the discriminant function. The pollution map suggests that the pollutants mainly come from the west side of Osheepcheon Creek. Thus, the abandoned coal mine drainage from the west side has to be appropriately treated as soon as possible to prevent Osheepcheon Creek from being further polluted. Considering the topography, climate, and the amount of the mine drainage, an active treatment method is recommended.  相似文献   

8.
. Currently, exploration of gold ores is under discussion in Turkey, without considering its adverse affect on the environment. Studying the adverse affect on environment is extremely important because significant civic activities are already taking place on the geological units that contain gold ore bodies in Turkey. Such an area is located at the southeast of Izmir City (Turkey), and approximately 2-km-long gold-bearing ore veins occur close to the Efemçukuru Village. The objective of this study was to describe the characteristics and seasonal variation of the groundwater chemistry and pollution of the aquifer in the ore deposit site, and to determine the impact of ore deposits on groundwater quality. The gold-bearing formation is highly weathered and fractured. The fractures in the geological units control the permeability and the depth of groundwater in the area. The concentrations of Al, Ag, Cu, Cd, Cr, Fe, Pb, Mn, Zn, Ni, and Sb were determined for four well samples and two stream waters for wet and dry seasons. The results showed that the concentrations of most of these elements were below the USA EPA (Environmental Protection Agency) limits; however, Pb and Cd concentrations are slightly above the limits. The results indicate that minerals in gold bodies do not dissolve although the weathering of formations is high. The low concentration of elements in groundwater and streams may be attributed to the high velocity of ground and surface water.  相似文献   

9.
The Jharia coalfield is the most important and active minig region; it experiences groundwater inflow and affects groundwater levels in overlying aquifers, and it provides the basis for a conceptual model of the hydrogeological impacts of coal mining. The several sandstone aquifers of the overburden are separated by aquitards that limit vertical hydraulic connection, but the inflow responds to seasonal events and seems to be linked to shallow groundwater behavior. The mine drainage behavior suggests a hydraulic connection between the mine and the shallower groundwater system. The greatest declines are directly above the panels, with an immediate response to coal mining. The inflow is localized by natural and induced fracture zones and is mostly into recent workings. The groundwater behavior is controlled by hydraulic property changes caused by mine-induced fracturing. The hydrological and chemical qualities of the shallow groundwater regime in 13 mining collieries in Mukunda Block have been investigated. Water samples collected from 30 shallow monitoring dug wells were chosen for the study. Rainfall, runoff, and infiltration rates have been calculated in the area. The water-quality plottings were used to interpret the distribution of individual chemical parameters and in predicting the water quality. The underground mine water has been classified as: (1) unconfined groundwater in the calcareous siltstone and sandstone—its composition is Na, Ca, SO4 and Na-MgHCO3 with moderate total dissolved solids (TDS) 200–1480 ppm; (2) the deep groundwater originating from the coal seams and associated sediments in the near-surface environments—this is a Na-HCO3 water with higher TDS; and (3) spoil dump waters are essentially Na-HCO3 with high TDS. This article presents some hydrologic results and conclusions relating to the hydrogeological and environmental impacts of the coal mining in the Jharia coalfield.  相似文献   

10.
Acid mine drainage (AMD) is one of the severe environmental problems that coal mines are facing. Generation of AMD in the northeastern part of India due to the coal mining activities has long been reported. However detailed geochemical characterization of AMD and its impact on water quality of various creeks, river and groundwater in the area has never been reported. Coal and coal measure rocks in the study area show finely disseminated pyrite crystals. Secondary solid phases, resulted due to oxidation of pyrite, occur on the surface of coal, and are mainly consisting of hydrated sulphate complexes of Fe and Mg (copiapite group of minerals). The direct mine discharges are highly acidic (up to pH 2.3) to alkaline (up to pH 7.6) in nature with high concentration of SO42−. Acidic discharges are highly enriched with Fe, Al, Mn, Ni, Pb and Cd, while Cr, Cu, Zn and Co are below their maximum permissible limit in most mine discharges. Creeks that carrying the direct mine discharges are highly contaminated; whereas major rivers are not much impacted by AMD. Ground water close to the collieries and AMD affected creeks are highly contaminated by Mn, Fe and Pb. Through geochemical modeling, it is inferred that jarosite is stable at pH less than 2.5, schwertmannite at pH less than 4.5, ferrihydrite above 5.8 and goethite is stable over wide range of pH, from highly acidic to alkaline condition.  相似文献   

11.
The Caldas Uranium Mine (CUM), located on the Poços de Caldas Plateau in the southeastern region of Brazil, is presently undergoing a decommissioning process. The aim of the present investigation is to identify and characterize the effects of acid mine drainage (AMD) originating from the CUM on surface water quality. To achieve these aims, sampling stations were located at two AMD sources: the retention pond at the foot of waste rock pile#4 (WRP#4) and the settling pond that receives effluents from the tailings dam (TD). Ten additional sampling stations were located along watercourses in the vicinity, both downstream and upstream of the mine. Sampling was performed during the rainy and dry seasons in 2010 and 2011. The water analysis detected significant changes in pH, electrical conductivity, F?, Cd, U, Zn, Al, Mn, As, Ca, SO4 2?, Pb, 238U, 226Ra, 210Pb, 232Th, 228Ra, and Mo in waters downstream of both pond discharge sites. It was demonstrated that the disequilibrium between 226Ra and 238U can be used to trace the extent of AMD impacts in nearby streams. Variations in 18O and 2H enabled the flow of mining-impacted water to be traced from the ponds to nearby streams. Multivariate analysis yielded a three-factor model: Factor 1 was interpreted as being associated with AMD (from WRP#4) and Factor 2 with a Ca–Mo relationship associated with the chemical constitution of the ore and with the treatment of tailings wastes in the area (from TD); Factor 3 was interpreted as being associated with the natural influence of geogenic processes on water quality in the area. The results of this study provide a scientific basis for recommending appropriate remedial actions during mine decommissioning.  相似文献   

12.
黄河流域中上游矿区煤?水矛盾突出,煤炭开采对地下水环境造成一定的破坏。基于此,以鄂尔多斯盆地北部侏罗纪煤田榆神府矿区为研究区,在野外调查、数据分析、室内测试的基础上,分析研究区矿井水的量质特征,揭示煤炭高强度开采对地下水环境的影响,并开展矿井水生态利用研究。结果表明:研究区矿井富水系数在0.23~2.28,平均为0.91,评估2020年区内矿井排水量高达4.70亿m3,受采掘活动影响,浅埋煤层开采区地下水位下降趋势明显;区内矿井水出现不同程度的污染组分超标现象,主要超标指标为化学需氧量(COD)、Na+、SO4 2?、溶解性总固体(TDS),未处理的矿井水外排将会污染区内地下水环境;研究区浅层地下水超限的水质指标主要为NO3-N,与矿井水超限水质指标差别较大,反映出浅层地下水水质受采矿活动影响较小;提出矿井水浅层回灌和矿井水生态灌溉2种模式开展研究区矿井水的生态利用,矿井水回灌对矿井水中的溶解性有机碳、色度具有较好的去除效果,回灌后出水满足Ⅲ类地下水限值;浅埋煤矿矿井水具有作为矿区生态修复灌溉用水的较好潜力,中深埋煤矿和深埋煤矿矿井水不适宜作为灌溉用水。研究结果为我国西部煤矿区水资源保护和生态修复提供重要依据。   相似文献   

13.
 The Sanggok mine used to be one of the largest lead-zinc mines in the Hwanggangri mining district, Republic of Korea. The present study characterizes the heavy metal contamination in the abandoned Sanggok mine creek on the basis of physico-chemical properties of various kinds of water samples (mine, surface and groundwater). Hydrochemistry of the water samples is characterized by the relatively significant enrichment of Ca2+, HCO3 , NO3 and Cl in the surface and groundwaters, whereas the mine water is relatively enriched in Ca2+, Mg2+, heavy metals, and HCO3 and SO4 2–. The more polluted mine water has a lower pH and higher Eh, conductivity and TDS values. The concentrations of some toxic elements (Al, As, Cd, Cu, Fe, Mn, Pb, Se, Sr, Pb and Zn) are tens to hundreds of times higher in the mine water than in the unpolluted surface and groundwaters. However, most immobile toxic pollutants from the mine drainage were quickly removed from the surface water by the precipitation of Al and Fe oxyhydroxides. Geochemical modeling showed that potentially toxic heavy metals might exist largely in the forms of MSO4 2– and M2+ in the mine water. These metals in the surface and groundwaters could form M2+, CO3 2– and OH complex ions. Computer simulation indicates that the saturation indices of albite, alunite, anhydrite, chlorite, fluorite, gypsum, halloysite and strontianite in the water samples are undersaturated and have progressively evolved toward the saturation condition. However, barite, calcite, chalcedony, dolomite, gibbsite, illite and quartz were in equilibrium, and only clay minerals were supersaturated. Ground and mine waters seemed to be in equilibrium with kaolinite field, but some surface water were in equilibrium with gibbsite and seceded from the stability field of quartz. This indicates that surface water samples in reaction with carbonate rocks would first equilibrate with carbonate minerals, then gibbsite to kaolinite. Investigations on water quality and environmental improvement of the severely polluted Sanggok creek, as well as remediation methods on the possible future pollution of the groundwater by the acid mine drainage from the abandoned metal mines, are urgently required. Received: 4 February 2000 · Accepted: 9 May 2000  相似文献   

14.
The purpose of this work is to characterize the hydrochemical behavior of acid mine drainages (AMD) and superficial waters from the Adoria mine area (Northern Portugal). Samples of superficial and mine drainage water were collected for one year, bi-monthly, with pH, temperature, Eh, conductivity and HCO3 determined in situ with chemical analyses of SO4, Ca, K, Mg, Na, Cl, Ag, As, Bi, Co, Cu, Fe, Mn, Ni, Pb, Zn and Cd. In the mine, there are acidic waters, with low pH and significant concentrations of SO4, and metals (Fe, Mn, Zn, Cu, Pb, Cd and Ni), while in the superficial natural stream waters outside the mine, the pH is close to neutral, with low conductivity and lower metal concentrations. The stream waters inside the mine influence are intermediate in composition between AMD and natural stream waters outside the mine influence. Principal Component Analysis (PCA) shows a clear separation between AMD galleries and AMD tailings, with tailings having a greater level of contamination.  相似文献   

15.
Acidic, metal-rich waters produced by the oxidative weathering and resulting leaching of major and trace elements from pyritic rocks can adversely affect water quality in receiving streams and riparian ecosystems. Five study areas in the southern Rocky Mountains with naturally acidic waters associated with porphyry mineralization were studied to document variations in water chemistry and processes that control the chemical variations. Study areas include the Upper Animas River watershed, East Alpine Gulch, Mount Emmons, and Handcart Gulch in Colorado and the Red River in New Mexico. Although host-rock lithologies in all these areas range from Precambrian gneisses to Cretaceous sedimentary units to Tertiary volcanic complexes, the mineralization is Tertiary in age and associated with intermediate to felsic composition, porphyritic plutons. Pyrite is ubiquitous, ranging from ∼1 to >5 vol.%. Springs and headwater streams have pH values as low as 2.6, SO4 up to 3700 mg/L and high dissolved metal concentrations (for example: Fe up to 400 mg/L; Cu up to 3.5 mg/L; and Zn up to 14.4 mg/L). Intensity of hydrothermal alteration and presence of sulfides are the primary controls of water chemistry of these naturally acidic waters. Subbasins underlain by intensely hydrothermally altered lithologies are poorly vegetated and quite susceptible to storm-induced surface runoff. Within the Red River study area, results from a storm runoff study documented downstream changes in river chemistry: pH decreased from 7.80 to 4.83, alkalinity decreased from 49.4 to <1 mg/L, SO4 increased from 162 to 314 mg/L, dissolved Fe increased from to 0.011 to 0.596 mg/L, and dissolved Zn increased from 0.056 to 0.607 mg/L. Compared to mine drainage in the same study areas, the chemistry of naturally acidic waters tends to overlap but not reach the extreme concentrations of metals and acidity as some mine waters. The chemistry of waters draining these mineralized but unmined areas can be used to estimate premining conditions at sites with similar geologic and hydrologic conditions. For example, the US Geological Survey was asked to estimate premining ground-water chemistry at the Questa Mo mine, and the proximal analog approach was used because a mineralized but unmined area was located adjacent to the mine property. By comparing and contrasting water chemistry from different porphyry mineralized areas, this study not only documents the range in concentrations of constituents of interest but also provides insight into the primary controls of water chemistry.  相似文献   

16.
This study documents the environmental impacts of borate mines in Bigadiç district, which are the largest colemanite and ulexite deposits in the world. Borate-bearing formations have affected the concentrations of some contaminants in groundwater. Groundwater quality is directly related to the borate zones in the mines as a result of water–rock interaction processes. Calcium is the dominant cation and waters are Ca–SO4 and HCO3 type in the mine (Tülü borate mine) from which colemanite is produced. However in the Simav and Acep Borate Mines, ulexite and colemanite minerals are produced and waters from these open pit mines are Na–HCO3–SO4 types. High SO4 concentrations (reaching 519 mg/L) might be explained by the existence of anhydrite, gypsum and celestite minerals in the borate zone. Groundwater from tuff and borate strata showed relatively low pH values (7–8) compared to surface and mine waters (>8). EC values ranged from 270 to 2850 μS/cm. Boron and As were the two important contaminants determined in the groundwaters around the Bigadiç borate mines. Arsenic is the major pollutant and it ranged from 33 to 911 μg/L in the groundwater samples. The concentrations of B in the study area ranged from 0.05 to 391 mg/L. The highest B concentrations were detected at the mine areas. The extension of the borate zones in the aquifer systems is the essential factor in the enrichment of B and As, and some major and trace elements in groundwaters are directly related to the leaching of the host rock which are mainly composed of tuffs and limestones. According to drinking water standards, all of the samples exceed the tolerance limit for As. Copper, Mn, Zn and Li values are enriched but do not exceed the drinking water standards. Sulfate, Al and Fe concentrations are above the drinking water standard for the groundwater samples.  相似文献   

17.
On 25 April 1998 the tailings dam of the Aznalcóllar mine burst, a great quantity of pyrite waste sludge and acid water was spilled reaching the vicinity of the Doñana National Park. In surface and ground water samples taken a week after dam breaking, metals, trace elements and Pb isotopic ratios (206Pb/207Pb and 208Pb/206Pb) were analysed. In September 1998 a second sampling survey was carried out. The surface waters have a similar isotopic composition as the lead contained in the pyrite from the Aznalcóllar mine. The polluted groundwater of the Guadiamar aquifer also shows the influence of the mining origin of the lead. Lead isotope ratios (206Pb/207Pb and 208Pb/206Pb) in the groundwater of the Almonte-Marismas are very low and they differ clearly from the rest of groundwater samples. A further group of wells has a lead isotope composition intermediate between the Aznalcóllar mine and the atmospheric aerosols of the Iberian Peninsula.  相似文献   

18.
At sites of groundwater contamination, predictions of contaminant behavior and evaluation of remedial strategies depend on identification and characterization of the geochemical processes affecting contaminant migration. Heavy-metal loadings to waters and sediments by leachate from the Golbasi waste disposal site in Ankara, Turkey, have been evaluated quantitatively using hydrogeochemical modeling. The groundwater of the waste disposal area, characterized by high concentrations of Ca, K, Cl, Cd, Pb, Zn, Cu, B, Ni, SO4, and NO3, contaminates the waters and sediments in the down-gradient area, Eymir Lake and a swamp along the flow path. An advective mass transport duration is ~15 years for unretarded contaminants to move from the waste disposal well area to the southern shoreline of Eymir Lake. Mixing calculations suggest that the down-gradient groundwater is formed by mixing of 40 to 72% upgradient groundwater and 28 to 60% waste-disposal-area groundwater, as well as Eymir Lake surface-water ion concentrations formed by mixing of down-gradient groundwater (3%-25%) and swamp-water ion concentrations (75-97%) along the flow path. An evaluation of the changes in concentration of trace ion-related precipitation/dissolution and exchange reactions between water and sediments for the formation of both Eymir Lake surface-water composition and the down-gradient groundwater composition indicate considerable trace-ion content of the clays (exchangers) and related reactions in the system. These results suggest that the amounts of contaminants removed from or added both to the down-gradient groundwater and to surface waters through mixing, dilution, and evaporation processes are rather small. The amounts of ions in the waters at the present stage of the contamination process are predominantly governed by exchange and dissolution/precipitation reactions.  相似文献   

19.
Water samples from precipitation, glacier melt, snow melt, glacial lake, streams and karst springs were collected across SE of Kashmir Valley, to understand the hydrogeochemical processes governing the evolution of the water in a natural and non-industrial area of western Himalayas. The time series data on solute chemistry suggest that the hydrochemical processes controlling the chemistry of spring waters is more complex than the surface water. This is attributed to more time available for infiltrating water to interact with the diverse host lithology. Total dissolved solids (TDS), in general, increases with decrease in altitude. However, high TDS of some streams at higher altitudes and low TDS of some springs at lower altitudes indicated contribution of high TDS waters from glacial lakes and low TDS waters from streams, respectively. The results show that some karst springs are recharged by surface water; Achabalnag by the Bringi stream and Andernag and Martandnag by the Liddar stream. Calcite dissolution, dedolomitization and silicate weathering were found to be the main processes controlling the chemistry of the spring waters and calcite dissolution as the dominant process in controlling the chemistry of the surface waters. The spring waters were undersaturated with respect to calcite and dolomite in most of the seasons except in November, which is attributed to the replenishment of the CO2 by recharging waters during most of the seasons.  相似文献   

20.
Environmental pollution in the Kongjujeil mine creek was determined on the basis of physicochemical and mineralogical properties for various kinds of waters, soils, precipitates and sediments collected in August and December 1998. The hydrochemistry of water is characterized by an enrichment in concentrations of Ca 2+, Si, alkali ions, NO 3 - and Cl - in ground and surface water, where relatively the mine waters are significantly enriched in Ca 2++Mg 2+, Al, heavy metals and SO 4 2- concentrations. The mine waters have lower pH (3.24) and higher EC (613 µS/cm) compared with those of ground and surface water. The ranges of dD and d 18O values (SMOW) in the water are -50.2 to -61.6‰ and -7.0 to -8.6‰. Using a computer code, the saturation indices of albite, calcite and dolomite in the mine water show that it is undersaturated, and has progressively evolved toward the equilibrium state. Ground and surface water are nearly saturated. The gibbsite, kaolinite and smectite are supersaturated in the surface and groundwater. Geochemical modeling shows that mostly toxic metals exist largely in the form of metal sulfates and free metals in mine water. These metals in the surrounding fresh water could be formed of carbonate or hydroxide complex ions. Minerals within the soil and sediment near the mining area were partly variable consisting of quartz, mica, alkali feldspar, plagioclase, chlorite, vermiculite, berthierine and clay minerals. The separated heavy minerals, soil and sediment are composed of some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, malachite, goethite and various hydroxide minerals. Some potentially toxic elements (As, Cd, Cu, Pb, Sb and Zn) are found in extremely high concentrations in the surface soils in the vicinity of the mine. The enrichment index of heavy metals in sediment and surface soil of the mine drainage was very severe, while it was not so great in the cultivated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号