首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study illustrates the interest of using the elastic recoil detection analysis (ERDA) method to characterize any geological sample matrix with respect to hydrogen. ERDA is combined with Rutherford back scattering (RBS) and particle induced X-ray emission (PIXE), allowing the simultaneous characterization of the matrix with respect to major and trace elements (Z > 15). Analyses are performed by mapping of a 4 × 16 μm2 incident beam of 4He+ on large areas (50 × 200 μm2). The method is almost not destructive and requires no calibration with respect to well known hydrous samples. Hydrous and nominally anhydrous phases in contact with each other in the same sample may both be characterized. The depth of the analyses is limited to several μm beneath the surface, allowing tiny samples to be investigated, provided their sizes are larger than the incident beam. Our setup has been improved in order to allow H determination on a micrometric scale with a 5-15% relative uncertainty and a detection limit of 94 wt ppm H2O. We present multi-elemental mappings on a large panel of samples: (1) natural and analogue synthetic glasses from Stromboli volcano (0.44-4.59 wt% H2O), natural rhyolitic glasses (1466-1616 wt ppm H2O); (2) magmatic rhyolitic melt inclusions from Guadeloupe Island (4.37-5.47 wt% H2O) and their quartz host crystal (2020 ± 230 wt ppm H2O); (3) nominally anhydrous natural (82-260 wt ppm H2O) and experimentally hydrated (240-790 wt ppm H2O) olivines; natural clinopyroxenes (159-716 wt ppm H2O); natural orthopyroxenes (201-452 wt ppm H2O); a natural garnet (90 wt ppm H2O). Results show that ERDA is a strong and accurate reference method that can be used to characterize geological sample from various matrix compositions from high to low water contents. It can be used to calibrate other methods of microanalysis such as Fourier Transform Infrared Spectroscopy (FTIR) or secondary ion mass spectrometry (SIMS).  相似文献   

2.
A thin film of marcasite, FeS2, was synthesized under vacuum and its structure and reactivity under oxidizing conditions was investigated by means of diffraction and surface analytical techniques, respectively. Synthesis of the film was carried out by codepositing Fe and S2 onto a Ta support. The thickness of the film could be varied from approximately 10 Å to 1 μm. High-resolution S 2p synchrotron-based photoemission showed S22−, with undetectable amounts of S2− impurity that is typically present on natural sample surfaces. X-ray diffraction of the micron-thick films showed that the film crystallized in the marcasite phase of FeS2. Atomic force microscopy indicated that the thin film had a nanometer-scale roughness suggesting the film contained defects such as steps and kinks. X-ray photoelectron spectroscopy studies found the thin marcasite film to be more reactive than natural pyrite (the most ubiquitous FeS2 dimorph) after exposure to a gaseous O2/H2O environment on the basis of the amount of sulfate formation. Likely the oxidation of marcasite was dominated by its short-range order (e.g., presence of steps), because the density of nonstoichiometric defect sites (e.g., S2−) was low as assessed by photoelectron spectroscopy.  相似文献   

3.
4.
In this study, the valence states of uranium in synthetic and natural brannerite samples were studied using a combination of transmission electron microscopy-electron energy loss spectroscopy, scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX), and X-ray photoelectron spectroscopy (XPS) techniques. We used a set of five (UO2, CaUO4, SrCa2UO6, UTi2O6, and Y0.5U0.5Ti2O6) U standard samples, including two synthetic brannerites, to calibrate the EELS branching ratio, M5/(M4 +M5), against the number of f electrons. The EELS data were collected at liquid nitrogen temperature in order to minimise the effects of electron beam reduction of U6+ and U5+. Test samples consisted of three additional synthetic brannerites (Th0.7U0.3Ti2O6, Ca0.2U0.8Ti2O6, and Th0.55U0.3Ca0.15Ti2O6) and three natural brannerites from different localities. The natural brannerite samples are all completely amorphous, due to cumulative alpha decay events over geological time periods (24–508 Ma). Our U valence calibration results are in reasonable agreement with previous work, suggesting possibly a non-linear relationship between the branching ratio and the number of f electrons (and hence the average valence state) of U in solids. We found excellent agreement between the nominal valence states of U and the average valence states determined directly by EELS and estimated by EDX analysis (with assumptions regarding stoichiometry) in two of the three synthetic brannerite test samples. The average U oxidation states of the five synthetic brannerite samples, as derived from XPS analyses, are also in good agreement with those determined by other techniques. The average valence states of U in three amorphous (metamict) natural brannerite samples with alpha decay doses ranging from 3.6×1016 to 6.9×1017 /mg were found to be 4.4, 4.7, and 4.8, consistent with the presence of U5+ and/or U6+ as well as U4+ in these samples. These results are in general agreement with previous wet chemical analyses of natural brannerite. However, the average valence states inferred by SEM-EDX for two of the natural brannerite samples do not show satisfactory agreement with the EELS determined valence. This may be due to the occurrence of OH groups, cation vacancies, anion vacancies, or excess oxygen in the radiation-damaged structure of natural brannerite.  相似文献   

5.
The objective of this research is to assess critically the experimental rate data for O2 oxidation of dissolved Mn(II) species at 25°C and to interpret the rates in terms of the solution species of Mn(II) in natural waters. A species kinetic rate expression for parallel paths expresses the total rate of Mn(II) oxidation as Σki aij, where ki is the rate constant of species i and aij is the species concentration fraction in solution j. Among the species considered in the rate expression are Mn(II) hydrolysis products, carbonate complexes, ammonia complexes, and halide and sulfate complexes, in addition to the free aqueous ion. Experiments in three different laboratory buffers and in seawater yield an apparent rate constant for Mn(II) disappearance, kapp,j ranging from 8.6 × 10−5 to 2.5 × 10−2 (M−1s−1), between pH 8.03 and 9.30, respectively. Observed values of kapp exceed predictions based on Marcus outer-sphere electron transfer theory by more than four orders of magnitude, lending strong support to the proposal that Mn(II) + O2 electron transfer follows an inner-sphere path. A multiple linear regression analysis fit of the observed rates to the species kinetic rate expression yields the following oxidation rate constants (M−1s−1) for the most reactive species: MnOH+, 1.66 × 10−2; Mn(OH)2, 2.09 × 101; and Mn(CO3)22−, 8.13 × 10−2. The species kinetic rate expression accounts for the influence of pH and carbonate on oxidation rates of Mn(II), through complex formation and acid-base equilibria of both reactive and unreactive species. At pH ∼8, the greater fraction of the total rate is carried by MnOH+. At pH greater than ∼8.4, the species Mn(OH)2 and Mn(CO3)22− make the greater contributions to the total rate.  相似文献   

6.
Insight into the complexation of organic molecules on hematite surfaces was obtained from molecular-level studies of a simple probe molecule (methanol) with the R-cut surface of hematite. The R-cut crystal orientation of hematite, designated in this paper as α-Fe2O3(012), has two stable surface structures under ultrahigh vacuum (UHV) conditions based on low-energy electron diffraction (LEED) measurements. These are a (1×1) structure consisting of a bulk terminated arrangement of undercoordinated Fe3+ and O2− surface sites and a (2×1) reconstructed structure with unknown atomic structure. Whereas the (1×1) surface is essentially free of Fe2+, the (2×1) surface possesses a high surface concentration of Fe2+ sites based on electronic structure measurements using electron energy loss spectroscopy (EELS). Methanol adsorbs dissociatively on the (1×1) surface by coordination of the molecule’s oxygen atom at a Fe3+ site followed by transfer of the alcohol proton to a bridging O2− surface site, resulting in terminal OCH3 and bridging OH groups. Most of the dissociated methanol molecules recombine during heating and desorb in vacuum as methanol at 365 and 415 K for the (1×1) and (2×1) surfaces, respectively. However, a significant amount of the terminal OCH3 and bridging OH groups interchange as the surface is heated above room temperature (RT), resulting in bridging OCH3 and terminal OH groups. The bridging OCH3 groups are retained on the surface to higher temperature than the terminal OCH3 groups, but eventually decompose at about 550 K via a disproportionation reaction that forms gaseous CH3OH and H2CO. As a result of the disproportionation reaction, some surface Fe3+ sites are reduced to Fe2+ sites. The exchange process competes more successfully with recombinative desorption of methanol (from reaction of terminal OCH3 and bridging OH groups) on the (2×1) surface, despite the fact that this surface is already partially reduced, because terminal OCH3 groups are more stable on this surface than on the (1×1) surface. Based on these molecular-level findings, extensive exchange terminal organic ligands and bridging OH groups may play a significant role in stabilizing organics on hematite mineral surfaces. Such exchange processes may also play a role in destabilizing hematite surfaces toward reductive dissolution.  相似文献   

7.
The Sichuan basin is one of the largest gas-oil-bearing basins in China. Ool and. gas pools occur in Mesozoic, Paleozoic and Proterozoic strata in this basin, with natural gases being dominant. A good wealth of data from 2000 drill wells on the distribution of natural gases (hydrocarbons: CH4 C2H 6 + ; non-hydrocarbons: H2S, CO2, N2; noble gases: He, Ar) show that natural gases in the basin are predominated by oil-thermocracked and coal-series gases. Geological-factor analysis of the geochemical characteristics of natural gases provide evidence suggesting that the occurrence of natural gases, especially dry gases, is attributed to the high maturity of organic matter, and the multi-productive formation has a great bearing on the multi-source rocks; the anomalies of some components (e. g. H2S) are related not only to the type of primary organic matter, but also to the lithological characters of reservoir beds. Also discussed in this paper are some geochemical characteristics of coalseries and noncoal-series gases at the same degree of maturat ion, demonstrating that the former is characterized by high proportions of CH4 and gaseous Hg, high C1/C2 ratio, high δ13C, low C 2 + , and high iC4/nC4.  相似文献   

8.
Experiments were conducted to determine the water solubility of alkali basalts from Etna, Stromboli and Vesuvius volcanoes, Italy. The basaltic melts were equilibrated at 1,200°C with pure water, under oxidized conditions, and at pressures ranging from 163 to 3,842 bars. Our results show that at pressures above 1 kbar, alkali basalts dissolve more water than typical mid-ocean ridge basalts (MORB). Combination of our data with those from previous studies allows the following simple empirical model for the water solubility of basalts of varying alkalinity and fO2 to be derived: \textH 2 \textO( \textwt% ) = \text H 2 \textO\textMORB ( \textwt% ) + ( 5.84 ×10 - 5 *\textP - 2.29 ×10 - 2 ) ×( \textNa2 \textO + \textK2 \textO )( \textwt% ) + 4.67 ×10 - 2 ×\Updelta \textNNO - 2.29 ×10 - 1 {\text{H}}_{ 2} {\text{O}}\left( {{\text{wt}}\% } \right) = {\text{ H}}_{ 2} {\text{O}}_{\text{MORB}} \left( {{\text{wt}}\% } \right) + \left( {5.84 \times 10^{ - 5} *{\text{P}} - 2.29 \times 10^{ - 2} } \right) \times \left( {{\text{Na}}_{2} {\text{O}} + {\text{K}}_{2} {\text{O}}} \right)\left( {{\text{wt}}\% } \right) + 4.67 \times 10^{ - 2} \times \Updelta {\text{NNO}} - 2.29 \times 10^{ - 1} where H2OMORB is the water solubility at the calculated P, using the model of Dixon et al. (1995). This equation reproduces the existing database on water solubilities in basaltic melts to within 5%. Interpretation of the speciation data in the context of the glass transition theory shows that water speciation in basalt melts is severely modified during quench. At magmatic temperatures, more than 90% of dissolved water forms hydroxyl groups at all water contents, whilst in natural or synthetic glasses, the amount of molecular water is much larger. A regular solution model with an explicit temperature dependence reproduces well-observed water species. Derivation of the partial molar volume of molecular water using standard thermodynamic considerations yields values close to previous findings if room temperature water species are used. When high temperature species proportions are used, a negative partial molar volume is obtained for molecular water. Calculation of the partial molar volume of total water using H2O solubility data on basaltic melts at pressures above 1 kbar yields a value of 19 cm3/mol in reasonable agreement with estimates obtained from density measurements.  相似文献   

9.
The volume thermal expansion coefficient and the anisotropy of thermal expansion were determined for nine natural feldspars with compositions, in terms of albite (NaAlSi3O8, Ab) and anorthite (CaAl2Si2O8, An), of Ab100, An27Ab73, An35Ab65, An46Ab54, An60Ab40, An78Ab22, An89Ab11, An96Ab4 and An100 by high resolution powder diffraction with a synchrotron radiation source. Unit-cell parameters were determined from 124 powder patterns of each sample, collected over the temperature range 298–935 K. The volume thermal expansion coefficient of the samples determined by a linear fit of V/V 0 = α(T − T 0) varies with composition (X An in mol %) as:
aV = 2.90( 4 ) ×10 - 5 - 3.0( 2 ) ×10 - 7 *X\textAn + 1.8( 2 ) ×10 - 9 *X\textAn2 \alpha_{V} = 2.90\left( 4 \right) \times 10^{ - 5} - 3.0\left( 2 \right) \times 10^{ - 7} *X_{\text{An}} + 1.8\left( 2 \right) \times 10^{ - 9} *X_{\text{An}}^{2}  相似文献   

10.
We examined the fluvial geochemistry of the Huang He (Yellow River) in its headwaters to determine natural chemical weathering rates on the northeastern Qinghai-Tibet Plateau, where anthropogenic impact is considered small. Qualitative treatment of the major element composition demonstrates the dominance of carbonate and evaporite dissolution. Most samples are supersaturated with respect to calcite, dolomite, and atmospheric CO2 with moderate (0.710-0.715) 87Sr/86Sr ratios, while six out of 21 total samples have especially high concentrations of Na, Ca, Mg, Cl, and SO4 from weathering of evaporites. We used inversion model calculations to apportion the total dissolved cations to rain-, evaporite-, carbonate-, and silicate-origin. The samples are either carbonate- or evaporite-dominated, but the relative contributions of the four sources vary widely among samples. Net CO2 consumption rates by silicate weathering (6-120 × 103 mol/km2/yr) are low and have a relative uncertainty of ∼40%. We extended the inversion model calculation to literature data for rivers draining orogenic zones worldwide. The Ganges-Brahmaputra draining the Himalayan front has higher CO2 consumption rates (110-570 × 103 mol/km2/yr) and more radiogenic 87Sr/86Sr (0.715-1.24) than the Upper Huang He, but the rivers at higher latitudes are similar to or lower than the Upper Huang He in CO2 uptake by silicate weathering. In these orogenic zones, silicate weathering rates are only weakly coupled with temperature and become independent of runoff above ∼800 mm/yr.  相似文献   

11.
Experimental studies of the incorporation of chlorine in trioctahedral biotite-like micas, belonging to the series phlogopite-annite, phlogopite-KCo3AlSi3O10(OH)2 and phlogopite-KNi3AlSi3O10(OH)2, were performed at 600°C and 2 kbars, with a duration of two weeks.The results confirm for the incorporation of an anion in a crystal structure, the fundamental role of the dimension of the anion site, as has been established for cations in previous works. In biotites, the dimension of (OH-Cl) site is mainly controlled by the rotation angle α of the tetrahedra around a direction approximately parallel to c1.The experiments were performed using hydrothermal solutions with KCl? 0.5 M; under these conditions, the quantity of incorporated chlorine does not exceed ?0300 ppm in the most receptive mica (annite) and is twenty times less in the less receptive ones (phlogopite, for example).These results are applied to natural biotites in porphyry copper deposits, metamorphic rocks and mafic rocks. We conclude that most natural biotites which have a chlorine content of 1000 ppm or more crystallized in equilibrium with a fluid phase with chloride contents of several molar (minimum 3 M).The consideration of micas applies in the same way to amphiboles. A clear correlation between the Cl content and XFe is observed which can be interpreted in terms of local structure of the minerals. The structural factors which favour the fixation of chlorine, a large anion are the same which favour the fixation of large alkali cations (replacement of Na by K). This explains the observed correlations between Cl and K in natural amphiboles.  相似文献   

12.
The thermochemistry of anhydrous sulfates (anglesite, anhydrite, arcanite, barite, celestine) was investigated by high-temperature oxide melt calorimetry and differential scanning calorimetry. Complete retention and uniform speciation of sulfur in the solvent was documented by (a) chemical analyses of the solvent (3Na2O · 4MoO3) with dissolved sulfates, (b) Fourier transform infrared spectroscopy confirming the absence of sulfur species in the gases above the solvent, and (c) consistency of experimental determination of the enthalpy of drop solution of SO3 in the solvent. Thus, the principal conclusion of this study is that high-temperature oxide melt calorimetry with 3Na2O · 4MoO3 solvent is a valid technique for measurement of enthalpies of formation of anhydrous sulfates. Enthalpies of formation (in kJ/mol) from the elements (ΔHfo) were determined for synthetic anhydrite (CaSO4) (−1433.8 ± 3.2), celestine (SrSO4) (−1452.1 ± 3.3), anglesite (PbSO4) (−909.9 ± 3.4), and two natural barite (BaSO4) samples (−1464.2 ± 3.7, −1464.9 ± 3.7). The heat capacity of anhydrite, barite, and celestine was measured between 245 and 1100 K, with low- and high-temperature Netzsch (DSC-404) differential scanning calorimeters. The results for each sample were fitted to a Haas-Fisher polynomial of the form Cp(245 K < T < 1100 K) = a + bT + cT−2 + dT−0.5 + eT2. The coefficients of the equation are as follows: for anhydrite a = 409.7, b = −1.764 × 10−1, c = 2.672 × 106, d = −5.130 × 103, e = 8.460 × 10−5; for barite, a = 230.5, b = −0.7395 × 10−1, c = −1.170 × 106, d = −1.587 × 103, e = 4.784 × 10−5; and for celestine, a = 82.1, b = 0.8831 × 10−1, c = −1.213 × 106, d = 0.1890 × 103, e = −1.449 × 10−5. The 95% confidence interval of the measured Cp varies from 1 to 2% of the measured value at low temperature up to 2 to 5% at high temperature. The measured thermochemical data improve or augment the thermodynamic database for anhydrous sulfates and highlight the remaining discrepancies.  相似文献   

13.
The addition of synthetic organic ligands such as diethyldithiocarbamate (DDC) and 8-hydroxyquinoline (Ox) to the dissolved fraction (<0.2 μm) of South San Francisco Bay water facilitated the transport of ambient Cu and Ni into phytoplankton cells. The uptake mechanism is diffusion of the lipophilic organic Cu(DDC)2 0 and Cu(Ox)2 0 complexes (and corresponding Ni complexes) across the plasma membrane. Short-term uptake experiments were carried out using a coastal diatom,Thalassiosira weissflogii, and resulted in rapid uptake rates and high cellular concentrations of the metal relative to the bay water control. Steady-state conditions between the solution and cellular Cu concentrations occurred within 10 min for a 4 μM addition of DDC and after 3 h for a 100 μM addition of Ox. Steady-state cellular Cu concentrations were over 10 times and 6 times greater, for DDC and Ox treatments, than in the bay water controls. Steady-state cellular Ni concentrations were attained within 10 min for both ligand additions and were more than 6 times and 2 times greater than in the absence of the added ligands. Using this bioassay, we were also able to gain insight into the character of the background organic Cu complexes in South Bay. Our results suggest that the natural organic Cu complexes are relatively hydrophilic in character and do not appear to be directly assimilated across the plasmalemma.  相似文献   

14.
Both natural and synthetic samples of blaubleibender (blue-remaining) covellite have been studied by reflected light microscopy, electron probe microanalysis and electron microscopy and diffraction. The natural sample of composition Cu1.20S has a 19a × 19a superstructure based on the hexagonal coveilite subcell (side a). The synthetic sample of composition Cu1.10S has a 27 a × 2 7a superstructure. In both cases the phases are homogeneous. The evidence suggests that the recognition of two distinct types of blaubleibender covellite may be an oversimplification, and that a series of metastable superstructures based on the covellite structure may exist.Work done while on leave at the Department of Mineralogy and Petrology, Cambridge  相似文献   

15.
To explore the effect of bulk composition on the solidus of carbonated eclogite, we determined near-solidus phase relations at 3 GPa for four different nominally anhydrous, carbonated eclogites. Starting materials (SLEC1, SLEC2, SLEC3, and SLEC4) were prepared by adding variable proportions and compositions of carbonate to a natural eclogite xenolith (66039B) from Salt Lake crater, Hawaii. Near-solidus partial melts for all bulk compositions are Fe–Na calcio-dolomitic and coexist with garnet + clinopyroxene + ilmenite ± calcio-dolomitic solid solution. The solidus for SLEC1 (Ca#=100 × molar Ca/(Ca + Mg + FeT)=32, 1.63 wt% Na2O, and 5 wt% CO2) is bracketed between 1,050°C and 1,075°C (Dasgupta et al. in Earth Planet Sci Lett 227:73–85, 2004), whereas initial melting for SLEC3 (Ca# 41, 1.4 wt% Na2O, and 4.4 wt% CO2) is between 1,175°C and 1,200°C. The solidus for SLEC2 (Ca# 33, 1.75 wt% Na2O, and 15 wt% CO2) is estimated to be near 1,100°C and the solidus for SLEC3 (Ca# 37, 1.47 wt% Na2O, and 2.2 wt% CO2) is between 1,100°C and 1,125°C. Solidus temperatures increase with increasing Ca# of the bulk, owing to the strong influence of the calcite–magnesite binary solidus-minimum on the solidus of carbonate bearing eclogite. Bulk compositions that produce near-solidus crystalline carbonate closer in composition to the minimum along the CaCO3-MgCO3 join have lower solidus temperatures. Variations in total CO2 have significant effect on the solidus if CO2 is added as CaCO3, but not if CO2 is added as a complex mixture that maintains the cationic ratios of the bulk-rock. Thus, as partial melting experiments necessarily have more CO2 than that likely to be found in natural carbonated eclogites, care must be taken to assure that the compositional shifts associated with excess CO2 do not unduly influence melting behavior. Near-solidus dolomite and calcite solid solutions have higher Ca/(Ca + Mg) than bulk eclogite compositions, owing to Ca–Mg exchange equilibrium between carbonates and silicates. Carbonates in natural mantle eclogite, which have low bulk CO2 concentration, will have Ca/Mg buffered by reactions with silicates. Consequently, experiments with high bulk CO2 may not mimic natural carbonated eclogite phase equilibria unless care is taken to ensure that CO2 enrichment does not result in inappropriate equilibrium carbonate compositions. Compositions of eclogite-derived carbonate melt span the range of natural carbonatites from oceanic and continental settings. Ca#s of carbonatitic partial melts of eclogite vary significantly and overlap those of partial melts of carbonated lherzolite, however, for a constant Ca-content, Mg# of carbonatites derived from eclogitic sources are likely to be lower than the Mg# of those generated from peridotite.  相似文献   

16.
Here we present the results of experiments investigating the adsorption of Protactinium and Thorium onto different particle types in natural seawater. Particle types studied were smectite as a representative of clay, biogenic opal from a cleaned diatom culture, manganese dioxide precipitate, and calcium carbonate. The particles were added to three different types of natural seawater (0.5 mg/L) which were first 0.2 μm-filtered, and the distribution of Pa and Th between dissolved and particulate phase (>0.2 μm) was monitored for 4 to 5 d at increasing time intervals. The tracers applied were the β-emitters 233Pa and 234Th. The measurement technique via β-counting for both nuclides in the same sample is reported here for the first time.The observed recoveries during the experiment range from 40 to 99 (±5) % for Th and from 51 to 105 (±6) % for Pa. The distribution coefficients (Kd) after establishment of an equilibrium cover a wide range for Th from 0.5 to 107 × 106 ml/g, and from 0.03 to 166 × 106 ml/g for Protactinium, depending on particle type and on the type of seawater used.Thorium revealed a specific affinity for all particle types investigated, with varying degree and adsorption kinetics. The results suggest that all particle types investigated may serve as Th carrier phases in the sediment. Pa was found to be less particle reactive than Th in most cases. Th/Pa fractionation factors (FTh/Pa) were also obtained. Weakest fractionation was found on MnO2 (FTh/Pa=1), followed by the chemically cleaned biogenic opal (2.8) and smectite (5.4). The results for calcium carbonate were highly variable. Our experimental results imply that particle composition is indeed playing a role in the differing marine geochemistry of Th and Pa. We conclude that experiments with filtered natural seawater using particle concentrations on a natural level are a helpful approach when investigating the geochemical behaviour of strongly particle-reactive elements like Th and Pa in the marine environment.  相似文献   

17.
This study presents a detailed discrimination between the natural and anthropogenic sources of dissolved major elements in the Têt River, a typical small coastal river in the south of France. The main objectives were to quantify the materials that were released by human activities in the basin, and to determine the specific element inputs for the major land use forms. The dissolved material fluxes were estimated by weekly monitoring over a hydrological year (2000–2001) along the major water gauging stations, and the flux relationships were examined in the context of anthropogenic and natural basin characteristics as determined by a Geographical Information System (GIS). Intensive agricultural land use in the form of fruit tree cultures and vineyards has a strong control on the dissolved element fluxes in the river. Area specific element releases for these cultures are greatest for SO4, with an estimated average of about 430 ± 18 keq km−2 a−1. This is ?11 times the natural SO4 release by rock weathering. Also for K, NO3, PO4 and Mg, the specific releases were ?6 times the natural weathering rates (respectively about 44, 60, 4 and 265 keq km−2 a−1). Waste-waters are the other major source of anthropogenic elements in the river. They have an important role for the fluxes of inorganic P and N, but they are also a considerable source of Cl and Na to the river. For example, the average annual release of Cl is around 150 moles/inhabitant in the rural basin parts. Further downstream, however, where population density strongly increases, industrial effluents can enhance this value (>300 moles/inhabitant). The waste-waters contribute more than 70% of the dissolved inorganic N export to the sea, although their contribution to the average DOC export is almost negligible (3%).  相似文献   

18.
The importance of mitigation of climate change due to greenhouse gas (GHG) emissions from various developmental and infrastructure projects has generated interest at global level to reduce environmental impacts. Life cycle assessment may be used as a tool to assess GHG emissions and subsequent environmental impacts resulting from electricity generation from thermal power plants. This study uses life cycle approach for assessing GHG emissions and their impacts due to natural gas combined cycle (NGCC) and imported coal thermal power plants using the IPCC 2001 and Eco-Indicator 99(H) methods in India for the first time. The total GHG emission from the NGCC thermal power plant was 584 g CO2 eq/kWh electricity generation, whereas in case of imported coal, it was 1,127 g CO2 eq/kWh electricity generation. This shows that imported coal has nearly ~2 times more impacts when compared to natural gas in terms of global warming potential and human health as disability-adjusted life years from climate change due to GHG emissions such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O).  相似文献   

19.
The enthalpies of solution of petrologically important phases in the system MgO-Al2O3-SiO 2 were measured in a melt of composition 2PbO · B2O3 at 970 ± 2K. The substances investigated included synthetic and natural (meteoritic) enstatite (MgSiO3), synthetic aluminous enstatite (MgSiO30.9Al2O30.1), synthetic and natural cordierite (Mg2Al4Si5O18), synthetic and natural sapphirine (approx. 7MgO·9Al2O3 · 3SiO2), synthetic spinel (MgAl2O4), natural sillimanite (Al2SiO5), synthetic forsterite (Mg2SiO4), synthetic pyrope (Mg3Al2Si3O12), natural quartz (SiO2), synthetic periclase (MgO) and corundum (Al2O3). Improvement in standardization of the calorimeter solvent made possible greater precision in this study than obtainable in former work in this laboratory on some of the same substances.The enthalpies of formation of enstatite, synthetic cordierite, forsterite and spinel are in reasonable agreement with values previously determined by solution calorimetry. The enthalpy of formation of enstatite is about 0.7 kcal less negative than the value for clinoenstatite resulting from the HF calorimetry of Torgesen and Sahama (J. Amer. Chem. Soc.70. 2156–2160, 1948), and is in accord with predictions based on analysis of published pyroxene equilibrium work. Aluminous enstatite with 10 wt.% Al2O3 shows an enthalpy of solution markedly lower than pure MgSiO3: the measurements lead to an estimate of the enthalpy of formation at 970 K for MgAl2SiO6 (Mg-Tschermak) orthopyroxene of + 9.4 ± 1.5 kcal/mole from MgSiO3 and Al2O3.Comparison of the enthalpies of formation of synthetic cordierite and anhydrous natural low-iron cordierite shows that they are energetically quite similar and that the synthetic cordierite is not likely to have large amounts of (Al, Si) tetrahedral disorder. Comparison of the enthalpies of formation of synthetic sapphirine and natural low-iron sapphirine shows, on the other hand, that the former is not a good stability model for the latter. The lower enthalpy of formation of the high-temperature synthetic sample is undoubtedly a consequence of cation disordering.The enthalpy of formation of natural sillimanite is considerably less negative than given by the tables of Robie andWaldbaum (U.S. Geol. Surv. Bull.1259 1968).The measured enthalpy of formation of synthetic pyrope is consistent with that deduced from published equilibrium diagrams in conjunction with the present measured enthalpy of formation of aluminous enstatite. Calculation of the entropy of synthetic pyrope from the present data yields surprisingly high values and suggests that synthetic pyrope is not a good stability model for natural pyrope-rich garnets. Hence, considerable doubt exists about the direct quantitative application of experimental diagrams involving pyropic garnet to discussions of the garnet stability field in the Earth's outer regions.  相似文献   

20.
邓燕华 《地质科学》1983,(3):251-258
紫硫镍矿(Ni,Fe)3S4往往是镍黄铁矿表生蚀变作用的产物,分布在氧化带以下到潜水面附近。由于它易于氧化、淋失,故不易形成有工业价值的矿床,但在气候干燥地区,如我国甘肃金川地区,氧化速度减慢,特别是化学风化作用微弱,表面氧化膜隔离硫化镍与空气的连系,从而得以保持成为矿床。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号