首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Plate tectonic theory predicts that most deformation is associated with subduction and terrane accretion, with some deformation associated with transform/transcurrent movements. Deformation associated with subduction varies between two end members: (1) where the tectonic regime is dominated by subduction of oceanic lithosphere containing small terranes, a narrow surface zone of accretionary deformation along the subduction zone starts diachronously on the subducting plate at the trench as material is transferred from the subducting plate to the over-riding plate; and (2) where continent-continent collision is occurring, a wide surface zone of accretionary deformation starts synchronously or with limited diachronism. Palaeozoic deformational events in the Canadian Appalachians correspond to narrow diachronous events in the Ordovician and Silurian, whereas Devonian, Carboniferous and Permian deformational events are widespread and broadly synchronous. Along the western side of the Canadian Appalachians, the Taconian deformational event starts diachronously throughout the Ordovician and corresponds to the north-north-west accretion of the Notre Dame, Ascot-Weedon, St Victor and various ophiolitic massifs (volcanic arc and peri-arc terranes) over cratonic North America. Within the eastern half of the Central Mobile Belt, the Late Cambrian-Early Ordovician Penobscotian deformational event corresponds to the ?south-easterly accretion of the Exploits subzone (various volcanic are and peri-arc terranes) over the Gander Zone (?continental rise). In the centre of the orogen, the Late Ordovician-Silurian Beothukan deformational event corresponds to the south-easterly accretion of the Notre Dame over the Exploits-Gander subzones. Along the south-eastern side of the Central Mobile Belt, the Silurian Ganderian deformational event corresponds to the north-north-east, sinistral transcurrent accretion of the Avalon Composite Terrane (microcontinent) over the Gander-Exploits zones. Along the south-eastern half of the orogen, the Late Silurian-Middle Devonian Acadian deformation event corresponds to the westerly accretion of the Meguma terrane (intradeep or continental rise) over the Avalon Composite Terrane. Affecting the entire orogen, the Late Devonian, Carboniferous and Permian, Acadian-Alleghanian deformational events correspond to the east-west convergence between Laurentia and Gondwana (continent-continent collision).  相似文献   

2.
Rocks of the west flank of the northern Appalachian Orogen (miogeocline) record the history of the late Precambrian-early Paleozoic passive continental margin of Eastern North America. The ancient margin was destroyed by ophiolite obduction and arc collision during the Ordovician Taconic Orogeny. The present sinuous form of the miogeocline is interpreted to reflect ancient promontories and re-entrants of a previous orthogonal margin bounded by rifts and transforms.Four major terranes are recognized east of the miogeocline in Newfoundland and Nova Scotia. From west to east, these are the Dunnage, Gander, Avalon and Meguma. The Dunnage and Gander terranes were linked to the miogeocline during the Middle Ordovician Taconian Orogeny. The Avalon terrane arrived later, possibly during the mid-Paleozoic Acadian Orogeny. The Meguma terrane of southern Nova Scotia had docked with the Avalon terrane by Carboniferous time. The Dunnage terrane contains arc volcanics which lie above an ophiolitic substrate. The Gander terrane comprises a thick sequence of clastic sedimentary rocks, underlain by basement rocks with continental affinities. It has been interpreted as a continental margin, perhaps once on the eastern side of the Paleozoic Iapetus ocean. The Avalon terrane consists of belts of sedimentary and volcanic rocks which are probably underlain by Grenvillian basement. Its tectonic affinities are unclear. The Meguma terrane comprises a thick sequence of sediments, derived from the south-east. It is found only in southeastern Atlantic Canada. The boundaries between terranes are compressional in the west and steep, transcurrent faults in the east.The surface extent of the geological terranes is grossly correlative with deep structural zones, although no direct evidence exists for linking the two because most surface structures can be traced geophysically to only a few kilometres depth. A striking feature of the deep crustal structure is a lower, high velocity crustal layer beneath the Dunnage and Gander terranes.The modern margin of Atlantic Canada developed by rifting and by transform motion between adjacent continents. Stretching and thinning of the lithosphere, and the consequent production of basaltic magma that in places intrudes or underplates the thinned continental crust, are the most likely processes responsible for the evolution of the modern margin. These processes predict the observed deep sedimentary basins along the margin, the thinning of continental crust, and the high seismic velocities found within the ocean-continent transition zones.Rifting adjacent to Nova Scotia began in Late Triassic-Early Jurassic time between the present African and North American plates. These plate motions are also responsible for the major transform margin south of the Grand Banks. Separation between Iberia and the eastern Grand Banks occurred in mid-Cretaceous time, before the Late Cretaceous opening of the Labrador Sea. While the rifted segments of the margin exhibit deep sedimentary basins and thinned continental crust, the Grand Banks transform segment is characterized by a sharp transition zone and a relatively thin sediment cover. Numerous volcanic seamounts are built on the ocean crust adjacent to this transform segment.Mimicry of Paleozoic promontories and re-entrants by modern rift and transform margin segments, the location of Mesozoic sedimentary basins on ancestral Appalachian structures, and the reactivation and propagation of major Precambrian and Paleozoic structural boundaries during the latest phase of ocean opening attest to ancestral controls of the modern margins.The rift phase of both the ancient and modern passive margins is characterized by volcanism, mafic dike intrusion and by the development of basins filled with clastic sediments. The drift phase of both the ancient margin and the present Nova Scotia margin is marked by a change in sedimentary environment, such that carbonates replaced the rift phase clastic sediments. Two of the markers used to delineate the ancient ocean-continent transition zone; carbonate banks and steep gravity anomaly gradients, should be used with caution as the modern analogs of these markers may lie 100 km or more of this transition zone. Furthermore, it is naive to view the ancient transition as simple and narrow, for the modern margins exhibits complex transition zones between 30 and 300 km wide.In general, the evolution of the ancient and modern passive margins appear to be remarkably similar. Predictably, closing the present Atlantic will mimic the evolution of the Appalachian Orogen.  相似文献   

3.
The St. Marys Basin, along the southern flank of the composite Late Paleozoic Magdalen Basin in the Canadian Appalachians and along the Avalon-Meguma terrane boundary, contains Late Devonian-Early Carboniferous continental clastic rocks of the Horton Group that were deposited in fluvial and lacustrine environments after the peak of the Acadian orogeny. SHRIMP II (Geological Survey of Canada) data on approximately 100 detrital zircons from three samples of Horton Group rocks from the St. Marys Basin show that most of the zircons have been involved in a multistage history, recycled from clastic rocks in the adjacent Meguma and Avalonian terranes. Although there is a minor contribution from Early Silurian (411 Ma) and Late Devonian suites (ca. 380-370 Ma), Neoproterozoic (ca. 700-550 Ma) and Paleoproterozoic (ca. 2.0-2.2 Ga) zircon populations predominate, with a minor contribution from ca. 1.0-, 1.2-, and 1.8-Ga zircons. Published U-Pb single-zircon analyses on clastic sedimentary rocks indicate that the Meguma and Avalon terranes have different populations of detrital zircons, sourced from discrete portions (Amazonian and West African cratons) of the ancient Gondwanan margin. Both terranes contain Neoproterozoic and Late Archean populations. The SHRIMP data, in conjunction with published sedimentological and geochemical data, indicate that the Horton Group basin-fill sediments are largely the result of rapid uplift and erosion of Meguma terrane metasedimentary and granitoid rocks immediately to the south of the St. Marys Basin during the waning stages of the Acadian orogeny. Regional syntheses indicate that this uplift occurred before and during deposition and was a consequence of dextral ramping of the Meguma terrane over the Avalon terrane along the southern flank of the Magdalen Basin.  相似文献   

4.
学者们对塔中北坡走滑断层的活动期次和发育时间以及形成机制展开过一些研究,但尚未达成共识.近期高品质三维地震资料的获得,有助于对该区走滑断层展开更详细的研究.基于三维地震数据的解释,发现塔中北坡发育一系列下断穿寒武系基底、上断至中泥盆统的NNE向走滑断裂.地震剖面上显示多数走滑断裂几何学形态复杂,以上奥陶统为界,断裂呈现下部"正花状"与上部"负花状"相互叠置的"复合花状"构造样式.三维地震相干切片显示,下部断裂呈NNE向线性延伸且只分布于主位移带附近;上部断裂为NW走向,整体上呈现为右阶雁列排布.根据界面沿断层局部"隆升"高度的分析以及断层生长指数的计算可知,下部断层形成时间不早于晚奥陶世,上部雁列正断层的发育时间为中志留-中泥盆世.结合塔里木盆地周缘构造背景分析,认为下部基底断层可能发育于晚奥陶世,与古昆仑洋强烈俯冲碰撞作用相关;上部雁列断层的形成可能受控于下部基底走滑断层的活化,与阿尔金域强烈的褶皱造山作用相关.   相似文献   

5.
Numerous tholeiitic mafic-ultramafic intrusions occurring in the Avalon and the Gander terranes of the Appalachian Orogen host magmatic Ni-Cu sulfide accumulations. The sulfide occurrences of the Gander terrane are depleted in the platinum-group elements (PGE). Total PGE abundances in these intrusions do not exceed several hundreds of ppb. The Mechanic intrusion occurring in the Avalon terrane, on the other hand, has PGE concentrations as high as 2400 ppb. Low PGE levels in the Gander terrane can be explained by equilibration of the immiscible sulfide melt with a low proportion of silicate magma. One possible explanation would be that the parental magmas for these intrusions were sulfur saturated before leaving their source region. An early sulfide fractionation during migration to the upper crustal levels, or immediately after entering the magma chamber is another possibility. Differences in the PGE geochemistry of the two groups can be explained by the different source region characteristics and different environments in which the magmas evolved.  相似文献   

6.

In its type area around Narooma, the Narooma Terrane in the Lachlan Orogen comprises the Wagonga Group, which consists of the Narooma Chert overlain by the argillaceous Bogolo Formation. Conodonts indicate that the lower, largely massive (ribbon chert) part of the Narooma Chert ranges in age from mid-Late Cambrian to Darriwilian-Gisbornian (late Middle to early Late Ordovician). The upper Narooma Chert consists of shale, containing Eastonian (Late Ordovician) graptolites, interbedded with chert. Where not deformed by later faulting, the boundary between the Narooma Chert and Bogolo Formation is gradational. At map scale, the Narooma Terrane consists of a stack of imbricate thrust slices caught between two thrust faults that juxtaposed the terrane against the coeval Adaminaby Superterrane in Early Silurian time. These slices are best defined where Narooma Chert is thrust over Bogolo Formation. The soles of such slices contain multiply foliated chert. Late extensional shear bands indicate a strike-slip component to the faulting. The Narooma Terrane, with chert overlain by muddy ooze, is interpreted to be an oceanic terrane that accumulated remote from land for ~50 million years. The upward increase in the terrigenous component at the top of the Wagonga Group (shale, argillite, siltstone and sandstone of the upper Narooma Chert and Bogolo Formation) records approach of the terrane to the Australian sector of the Gondwana margin. Blocks of chert, argillite and sandstone reflect extensional/strike-slip disruption of the terrane as it approached the transform trench along the Gondwana-proto-Pacific plate boundary. Blocks of basalt and basalt breccia represent detritus from a seamount that was also entering the trench. There is no evidence that the Narooma Terrane or the adjacent Adaminaby Group formed in an accretionary prism/ subduction complex.  相似文献   

7.
East and Southeast Asia is a complex assembly of allochthonous continental terranes, island arcs, accretionary complexes and small ocean basins. The boundaries between continental terranes are marked by major fault zones or by sutures recognized by the presence of ophiolites, mélanges and accretionary complexes. Stratigraphical, sedimentological, paleobiogeographical and paleomagnetic data suggest that all of the East and Southeast Asian continental terranes were derived directly or indirectly from the Iran-Himalaya-Australia margin of Gondwanaland. The evolution of the terranes is one of rifting from Gondwanaland, northwards drift and amalgamation/accretion to form present day East Asia. Three continental silvers were rifted from the northeast margin of Gondwanaland in the Silurian-Early Devonian (North China, South China, Indochina/East Malaya, Qamdo-Simao and Tarim terranes), Early-Middle Permian (Sibumasu, Lhasa and Qiangtang terranes) and Late Jurassic (West Burma terrane, Woyla terranes). The northwards drift of these terranes was effected by the opening and closing of three successive Tethys oceans, the Paleo-Tethys, Meso-Tethys and Ceno-Tethys. Terrane assembly took place between the Late Paleozoic and Cenozoic, but the precise timings of amalgamation and accretion are still contentious. Amalgamation of South China and Indochina/East Malaya occurred during the Early Carboniferous along the Song Ma Suture to form “Cathaysialand”. Cathaysialand, together with North China, formed a large continental region within the Paleotethys during the Late Carboniferous and Permian. Paleomagnetic data indicate that this continental region was in equatorial to low northern paleolatitudes which is consistent with the tropical Cathaysian flora developed on these terranes. The Tarim terrane (together with the Kunlun, Qaidam and Ala Shan terranes) accreted to Kazakhstan/Siberia in the Permian. This was followed by the suturing of Sibumasu and Qiangtang to Cathaysialand in the Late Permian-Early Triassic, largely closing the Paleo-Tethys. North and South China were amalgamated in the Late Triassic-Early Jurassic and finally welded to Laurasia around the same time. The Lhasa terrane accreted to the Sibumasu-Qiangtang terrane in the Late Jurassic and the Kurosegawa terrane of Japan, interpreted to be derived from Australian Gondwanaland, accreted to Japanese Eurasia, also in the Late Jurassic. The West Burma and Woyla terranes drifted northwards during the Late Jurassic and Early Cretaceous as the Ceno-Tethys opened and the Meso-Tethys was destroyed by subduction beneath Eurasia and were accreted to proto-Southeast Asia in the Early to Late Cretaceous. The Southwest Borneo and Semitau terranes amalgamated to each other and accreted to Indochina/East Malaya in the Late Cretaceous and the Hainanese terranes probably accreted to South China sometime in the Cretaceous.  相似文献   

8.
The present kinematic and dynamic analysis of large-scale strike-slip faults, which enabled the formation of a collage of Altai terranes as a result of two collisional events. The Late Devonian–Early Carboniferous collision of the Gondwana-derived Altai-Mongolian terrane and the Siberian continent resulted in the formation of the Charysh–Terekta system of dextral strike-slip faults and later the Kurai and Kuznetsk–Teletsk–Bashkauss sinistral strike-slip faults. The Late Carboniferous–Permian collision of the Siberian and Kazakhstan continents resulted in the formation of the Chara, Irtysh and North-East sinistral strike-slip zones. The age of deformation of both collisional events becomes younger toward the inner areas of the Siberian continent. In the same direction the amount of displacement of strike-slip faulting decreases from several thousand to several hundred kilometers. The width of the Late Paleozoic zone of deformation reaches 1500 km. These events deformed the accretion-collision continental margins and their primary paleogeographic pattern.  相似文献   

9.
Fault zones within turbidite-dominated orogenic systems, typified by the Lachlan Orogen of eastern Australia, are characterised by higher than average strain and intense mica fabrics, transposition foliation and isoclinal folds, poly-deformation with overprinting crenulation cleavages, and steeply to moderately plunging meso- and micro-folds. They have a different character compared to the brittle–ductile fault zones of classic foreland fold-and-thrust belts such as the Appalachians and the Canadian Rocky Mountains. Multiple cleavages and transposition layering record a progressive shear-related deformation history. An intense mica fabric evolves initially during shortening of the overlying sedimentary wedge, but is progressively modified during rotation and emplacement to higher structural levels along the steep parts of inferred listric faults. The deformed wedge outside the fault zones generally undergoes one phase of deformation, shown by a weak to moderately developed slaty cleavage which is parallel to the axial surface of upright, subhorizontally plunging chevron-folds. Other faults within the turbidites of the Lachlan Orogen include the steep zones of ‘ductile’ strike-slip deformation that bound a centrally located, high T/low P metamorphic complex. Characterised by SC mylonites, these ductile shear zones indicate a southward passage of the metamorphic complex as a crustal wedge, with emplacement to higher structural levels along a leading-edge, ductile thrust-fault. Ar–Ar dating constrains the timing of regional deformation to be mostly Late Ordovician through Silurian across the Lachlan Orogen. Faults in the low grade turbidite sequences record the kinematic evolution of the developing Lachlan Orogen and indicate progressive deformation associated with simultaneous, eastward propagating and migrating deformation fronts in both the western and eastern parts of the fold belt. These deformation fronts are related to ‘accretionary style’ deformation at the leading edges of overriding plates, in an inferred southwest Pacific-type subduction setting from the Late Ordovician to the mid-Devonian, along the former Gondwana margin. The fault zones effectively accommodate and preserve movements within the structurally thickening, migrating and prograding accretionary wedge.  相似文献   

10.
The Wentworth plutonic complex, consisting of gabbro and granite, was emplaced in the earliest Carboniferous in the Cobequid shear zone of the northern Appalachians. The plutonic complex is coeval with a 5-km-thick pile of volcanic rocks. Early alkalic A-type granite correlates with thick felsic pyroclastics and minor basalt, which are overlain by 1.5-km-thick basalts that correlate with a large gabbro pluton that is intruded, in turn, by late granites. The basalt and gabbro are Fe-rich tholeiites. The geochemistry of the late granites suggests that they formed by differentiation of a granodioritic magma resulting from assimilation of early granite by the gabbroic magma. The Wentworth plutonic complex lies on the north side of the dextral Rockland Brook fault, near the western tip of wedge-shaped basement block of the Avalon terrane. Field observations of mesoscopic structures and map contacts show that the plutonic bodies at all structural levels are related to transpressive strike–slip faults. Dykes parallel to the mylonitic foliation in the Rockland Brook fault zone and at the contacts between igneous phases suggest that the plutons developed largely through dyke to pluton construction. The plutonism was initiated by dyking related to major faults under transpression that was partitioned into shear zone-bounded blocks, while the sinking of those blocks finally provided the space for mafic magma emplacement. Dyking was active over at least a 10-Ma time period. The overall location of plutonism in the Cobequid shear zone appears related to its position at the intersection of the shear zone bounding the southwestern margin of the Magdalen basin and the E–W transpressional contact of the Avalon and Meguma terranes. Magmatism enabled thermomechanical softening of the crust and the vertical and lateral extrusion of the wedge-shaped basement blocks, whose movement controlled the localisation of the voluminous magmatic activity.  相似文献   

11.
In the late Precambrian Avalon composite terrane of the Canadian Appalachians, the local juxtaposition of Avalonian successions against gneiss complex–platformal metasedimentary rock associations of uncertain relationship to the Avalonian overstep sequence has raised important questions about the configuration of the composite terrane. Typical of this relationship is the juxtapostion of Avalonian arc-related packages (Caledonia assemblage) with the migmatitic Brookville Gneiss and metacarbonate–quartzite Green Head Group (Brookville assemblage) along the Caledonia Fault in southern New Brunswick. Polyphase deformation of the predominantly greenschist facies Green Head Group accompanied development of a regional ductile shear zone that separates the group from the amphibolite facies Brookville Gneiss. Heterogeneous ductile flow in carbonate rocks and the development of a regional foliation was followed by NW-directed shortening and the local development of a penetrative axial planar fabric that intensifies towards the shear zone. Associated structural elements suggest regional dextral transpression, consistent with the metamorphic contrast across the shear zone. Steeply plunging east–west folds may record younger, sinistral movement on associated NE–SW faults. Deformation coincident with metamorphic culmination in the Brookville Gneiss produced a gneissic foliation that was later deformed to produce widespread minor folds of sheath-like geometry. These folds are best developed proximal to the shear zone where they locally document dextral shear, and probably include several generations that overlap early phases of deformation of the Green Head Group. Kinematic indicators within the gneiss are predominantly dextral. 36Ar/40Ar versus 39Ar/40Ar isotope-correlation ages recorded by metamorphic hornblende suggest that regional cooling of the Brookville Gneiss through ca. 500°C occurred at ca. 540 Ma, providing a minimum age for initial deformation and concomitant metamorphic culmination in the gneiss. 40Ar/39Ar plateau ages for metamorphic muscovite suggest cooling through ca. 375°C at ca. 500–520 Ma, providing a minimum age for progressive deformation in both lithotectonic sequences. Low temperature age discordance in the muscovite spectra suggest partial rejuvenation in the mid- and late Palaeozoic. Protracted Cambrian tectonothermal activity in the Brookville assemblage contrasts with the Avalonian tectonostratigraphic record of the Caledonia assemblage in which late Precambrian arc-related packages are overstepped by Cambrian–Ordovician shallow marine strata. Significant Cambrian separation between the two assemblages is therefore suggested, despite Precambrian similarities in their tectonothermal evolution. Separation as a consequence of terrane dispersal is suggested, and may imply a significant rearrangement of the Avalon composite terrane at this time. Final juxtaposition of the two assemblages pre-dates their shared late Palaeozoic rejuvenation, and may correspond to an earlier, mid-Palaeozoic thermal overprint correlated with tectonothermal activity accompanying accretion of the Avalon and outboard Meguma terranes to more inboard tectonic elements of the northern Appalachians.  相似文献   

12.
Comparative data on tectono-stratigraphic complexes of the Ultra-Tamba terrane (Inner Zone of Japan) and upper structural level of the Samarka terrane in the Jurassic accretionary prism of Sikhote Alin are considered. Structural, lithological, petrographic data and age constraints characterizing rock associations of the terranes show that the latter are similar to a great extent, and consequently the Ultra-Tamba terrane can be regarded as an element of the Tamba-Mino-Ashio accretionary prism of the Jurassic but not Permian age, as it was thought earlier. The considered data substantiate confident structural correlation of both fragments of the Jurassic prism and of two regions in general.  相似文献   

13.
The two major Early to Middle Palaeozoic tectonic/metamorphic events in the northern Appalachians were the Taconian (Middle to Late Ordovician) in central to western areas and the Acadian (Late Silurian to early Middle Devonian) in eastern to west-central areas. This paper presents a model for the Acadian orogenic event which separates the Acadian metamorphic realm into eastern and western belts based on distinctively different styles. We propose that the Acadian metamorphism in the east was the delayed consequence of Taconian back-arc lithospheric modification. East of the Taconian island arc, thick accumulations of Late Ordovician and Silurian sediments, coupled with plutons rising along a magmatic arc, produced crustal thermal conditions appropriate for anomalously high-T, low-P metamorphism accompanied by major crustal anatexis. In this zone, upward melt migration was coupled with subsequent E-W crustal shortening (possibly due to outboard collision with the Avalon terrane) to produce mechanical conditions that favoured formation of fold and thrust nappes and resultant tectonic thickening to the west (and probably to the east as well). The basis for the distinction between the Eastern and Western Acadian events lies in the contrasting styles of metamorphism accompanying each. Evidence for contrasting metamorphic styles consists of (1) estimated metamorphic field gradients (MFGs) based on thermobarometric studies, and (2) petrological evidence for contrasting P–T trajectories. West of the Acadian metamorphic front, the Taconian zone has an MFG in which peak temperatures of 400-600° C were reached at pressures of about 4–6 kbar, with both P and T increasing to the east. Near its western edge, the Western Acadian metamorphic overprint has a similar MFG to the Taconian, and is mainly discriminated by 40Ar/39Ar dating and microtextural evidence. East of this narrow zone, the Western Acadian overprint is characterized by progressively higher temperatures (600–725° C) and pressures (6.5–10 kbar, or more) to the east, yielding an overall MFG that lies along, or slightly above, the kyanite–sillimanite boundary on a P–T diagram. There is little or no plutonism accompanying Western Acadian metamorphism. In contrast, thermobarometry in the Eastern Acadian, east of the Bronson Hill Belt, yields high-T, intermediate-P conditions for the highest grade rocks known in New England: T= 650–750° C, P= 4.5–6.5 kbar for granulite facies assemblages which apparently formed along an ‘anticlockwise’P–T path. The Bronson Hill Belt lies geographically between the Eastern and Western Acadian zones and shows transitional petrological behaviour: anomalously high temperatures at intermediate pressures, but a ‘clockwise’ path with decompression cooling. Radiometric dating indicates peak Taconian conditions may have been achieved as early as 475 Ma in the Taconian hinterland and as late as 445 Ma in the Taconian foreland (including the Taconic allochthons). Eastern Acadian magmatism may have started as early as 425 Ma, and most nappe-stage deformation and metamorphism in the Eastern Acadian zone appears to have ended by about 410 Ma. Tectonic thickening in the Western Acadian (including the western counterparts of the nappe-stage deformation documented in the Eastern Acadian) must pre-date attainment of peak metamorphic conditions dated at 395–385 Ma. Dome-stage deformation clearly post-dates peak metamorphism and deforms metamorphic isograds. The end of Western Acadian deformation is well constrained by 370-375 Ma radiometric ages of late pegmatites and granitoids which cross-cut all structures.  相似文献   

14.
We report the ages of cleavage development in a normally intractable lower greenschist facies slate belt, the Central Maine-Aroostook-Matapedia belt in east-central Maine. We have attacked this problem by identifying the minimum ages of muscovite in a regional Acadian cleavage (S1) and in a local ductile fault zone cleavage (S2) using 40Ar/39Ar geochronology and the ages of crosscutting plutons. Our success stems from the regional low-grade metamorphism of the rocks in which each crystallization event preserves a40Ar/39Ar crystallization age and not a cooling age. Evidence for recrystallization via a pressure solution mechanism comes from truncations of detrital, authigenic, and in some rocks S1 muscovite and chlorite grains by new cleavage-forming muscovite and chlorite grains. Low-blank furnace age spectra from meta-arkosic and slaty rocks climb from moderate temperature Devonian age-steps dominated by cleavage-forming muscovite to Ordovician age-steps dominated by a detrital muscovite component. S1- and S2-cleaved rocks were hornfelsed by granitoids of ∼407 and 377 Ma, respectively. The combination of these minimum ages with the maximum metamorphic crystallization ages establishes narrow constraints on the timing of these two cleavage-forming events, ∼410 Ma (S1) and ∼380 Ma (S2). These two events coincide in time with a change in the plate convergence kinematics from the arrival of the Avalon terrane (Acadian orogeny), to a right-lateral transpression arrival of the Meguma terrane in the Neoacadian orogeny.  相似文献   

15.
试论郯城-庐江断裂带的形成、演化及其性质   总被引:49,自引:13,他引:36  
吴根耀  梁兴  陈焕疆 《地质科学》2007,42(1):160-175
郯(城-)庐(江)断裂带由前白垩纪的3条重要的边界断裂连接而成:古郯庐断裂曾是连接秦岭—大别洋与苏鲁洋的转换断层,辽渤断裂是华北克拉通与胶辽克拉通之间的分界,敦化—密山断裂则是西伯利亚次大陆与一系列拼贴的外来(移置)地体间的分界。早白垩世,随亚洲大陆雏形的出现,郯庐断裂带形成并扩大其规模(如包括了依兰—伊通断裂)。江西的赣江断裂和鄂东南湘东北的团(风-)麻(城)断裂白垩纪时与郯庐断裂有相同的活动方式,可视为郯庐断裂带的南延。从本质上说,郯庐断裂带是一条斜向(左行)汇聚—剪切造山带,这一造山作用在中生代里是一个连续的分阶段进行的过程,左行走滑活动始自三叠纪,至早白垩世造山带形成,始于早白垩世晚期并于晚白垩世达到全盛的张裂活动则是造山带坍塌的反映。新生代起东亚地区进入新的地史阶段,郯庐断裂带进入消亡期,更新世时已明显解体为活动方式各不相同的若干段。文章还简要讨论了古郯庐断裂的形成时代、印支期走滑活动的性质和东亚大陆边缘地区的构造格架等问题。  相似文献   

16.
East and Southeast Asia comprises a complex assembly of allochthonous continental lithospheric crustal fragments (terranes) together with volcanic arcs, and other terranes of oceanic and accretionary complex origins located at the zone of convergence between the Eurasian, Indo-Australian and Pacific Plates. The former wide separation of Asian terranes is indicated by contrasting faunas and floras developed on adjacent terranes due to their prior geographic separation, different palaeoclimates, and biogeographic isolation. The boundaries between Asian terranes are marked by major geological discontinuities (suture zones) that represent former ocean basins that once separated them. In some cases, the ocean basins have been completely destroyed, and terrane boundaries are marked by major fault zones. In other cases, remnants of the ocean basins and of subduction/accretion complexes remain and provide valuable information on the tectonic history of the terranes, the oceans that once separated them, and timings of amalgamation and accretion. The various allochthonous crustal fragments of East Asia have been brought into close juxtaposition by geological convergent plate tectonic processes. The Gondwana-derived East Asia crustal fragments successively rifted and separated from the margin of eastern Gondwana as three elongate continental slivers in the Devonian, Early Permian and Late Triassic–Late Jurassic. As these three continental slivers separated from Gondwana, three successive ocean basins, the Palaeo-Tethys,. Meso-Tethys and Ceno-Tethys, opened between these and Gondwana. Asian terranes progressively sutured to one another during the Palaeozoic to Cenozoic. South China and Indochina probably amalgamated in the Early Carboniferous but alternative scenarios with collision in the Permo–Triassic have been suggested. The Tarim terrane accreted to Eurasia in the Early Permian. The Sibumasu and Qiangtang terranes collided and sutured with Simao/Indochina/East Malaya in the Early–Middle Triassic and the West Sumatra terrane was transported westwards to a position outboard of Sibumasu during this collisional process. The Permo–Triassic also saw the progressive collision between South and North China (with possible extension of this collision being recognised in the Korean Peninsula) culminating in the Late Triassic. North China did not finally weld to Asia until the Late Jurassic. The Lhasa and West Burma terranes accreted to Eurasia in the Late Jurassic–Early Cretaceous and proto East and Southeast Asia had formed. Palaeogeographic reconstructions illustrating the evolution and assembly of Asian crustal fragments during the Phanerozoic are presented.  相似文献   

17.
Polydeformed recumbent fold complexes of upper greenschist to low amphibolite facies bound the central Ordovician ophiolite terrane of the northeastern Appalachians on both sides, separate it from the platforms on the northwest and southeast and impart a symmetry to the system which is particularly well displayed in northern Newfoundland. These metamorphic complexes or marginal crystalline belts contain metasedimentary and metavolcanic rocks whose deformation and metamorphism predate Ordovician ophiolitic rocks of the central part of the system and hence were not the product of Ordovician ocean-floor spreading. The metasediments of the marginal crystalline belts have characteristics similar to sediments of continental-rise prisms while the metavolcanic rocks are similar to island arc, or locally to ophiolitic sequences. Furthermore, the crystalline belts in Newfoundland contain linear mafic/ultramafic complexes within them of ophiolitic aspect and comparable age to the surrounding metamorphic rocks. In the northwestern marginal crystalline belt this mafic/ultramafic complex has not only controlled the late depositional development of the belt, but also apparently occupies the symmetry axis of the recumbent fold complex and is spatially related to deformation intensity. It is suggested that these mafic/ultramafic complexes represent remnants of small ocean basins that opened within the continental-rise prisms. Tectonism resulted from closure of these basins associated with some transform movement, bringing a continental fragment back into contact with the rest of the continental margin. Closure is dated as Late Cambrian in the northwest and Late Precambrian in the southeast. This new mechanism for deformation of the marginal crystalline belts explains many of the details of geologic development not accounted for by earlier models. The implications of these Late Precambrian-Early Paleozoic processes on both sides of the proto-Atlantic Ocean are investigated to elucidate later plate development in Newfoundland. It is suggested that the later Acadian (Middle Devonian) orogeny may have been the result of convergence of oceanic trenches, leading to formation of transform faults. If correct, continental collision took place locally but was not the fundamental cause of the orogeny. This accounts for facies distribution and the contrast in metamorphism, deformation intensity and structural style between the Acadian and the earlier orogenic episodes.  相似文献   

18.
《Gondwana Research》2001,4(3):319-328
Examination of Landsat TM images, reconnaissance field traverses and the published geological maps from the Eastern Ghats Mobile Belt (EGMB), India, reveal a network of major ductile shear zones both within and at the margins. These shear zones are characterized by mylonitic foliation, grain size reduction, metamorphic retrogression, stretching lineations and distinct signatures of alkaline, anorthositic and granitic magmatism. These shear zones divide the EGMB into distinct terranes, which are heterogeneously deformed with extensive tracts of foliated mylonitic gneisses and ultramylonites. The main gneissic foliation in all the terranes is refolded in near non-coaxial manner generally about the axis subparallel to the elongation of the terrane.Structural history in each terrane is distinct in the orientation of stretching lineations, attitude of gneissosity and early fold axial planes, lithological assemblages and available geochronological data. It is possible to recognise nine large terranes within the EGMB and the characteristics of each terrane have been described. The terrane distribution in the EGMB could well fit a thrust tectonic, allochthonous model of amalgamation and accretion. Different terranes could be different thrust nappes or allochthonous tectonic sheets representing tectono-stratigraphic terranes.  相似文献   

19.
Tectonics of Northeast Asia: An overview   总被引:1,自引:0,他引:1  
The tectonic units of the Verkhoyansk-Chukotka Mesozoides and the Koryak-Kamchatka Fold Region substantially differ from each other in the structure and composition of terranes. The geodynamic settings of terrane formation are defined and the main stages of their tectonic history are reconstructed. The formation of Mesozoides was mainly controlled by collision, largely between the continent and the Kolyma-Omolon and Chukchi microcontinents. The accretionary structure of the Koryak Highland comprises various terranes transported by Pacific plates and docked to the Asian continent, periodically accreting its margin. The following evolutionary stages are established: destruction of the North Asian continent (Ordovician, Late Devonian-Early Carboniferous, Permian-Triassic); amalgamation (Middle Jurassic for Kolyma and Mid-Cretaceous for Koryak terranes); collision (terminal Early Cretaceous); and continental growth (terminal Early Cretaceous, terminal Late Cretaceous, middle Eocene).  相似文献   

20.
福建省区域地质构造特征   总被引:1,自引:0,他引:1  
福建自晚太古代以来经受了多次造山运动影响,尤以燕山期构造—岩浆活动最为强烈和频繁,以致省内华夏古陆不断发生裂解及增生。省内的北北东—北东东、北西—东西及南—北走向断裂十分发育,形成大小不同的断块(地体)。最突出的是南平—宁化(北东)断裂带与政和—大埔(北北东)构造—岩浆带相交汇,将福建省割切为闽西北、闽西南及闽东3个地体。本文对主要断裂及三大地体的构造—岩浆活动、变质—变形、岩浆侵入与喷发、地体的分离与拼接的演化历史进行概略阐述。总之,福建省是经多期造山作用由不同地体或断块拼接而成的复合造山带  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号