首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the Cambrian Jodoigne Formation in the easternmost part of the Anglo-Brabant Deformation Belt, sub-horizontal to gently plunging folds occur within the limbs of steeply plunging folds. The latter folds are cogenetic with cleavage and are attributed to the Brabantian deformation event. In contrast, although cleavage is also (1) virtually axial planar to the sub-horizontal to gently plunging higher-order folds, shows (2) a well-developed divergent fanning across these folds, (3) an opposing sense of cleavage refraction on opposite fold limbs, and (4) only very small cleavage transection angles, an analysis of the cleavage/bedding intersection lineation suggests that these higher-order folds have a pre-cleavage origin. On the basis of a comparison of structural and sedimentological features these higher-order folds are interpreted as slump folds. The seemingly ‘normal’ cleavage/fold relationship across the slump folds within the limbs of the large steeply plunging folds is due to the very small angle between cleavage and bedding.As such, a ‘normal’ cleavage/fold relationship is no guarantee for a syn-cleavage fold origin. It is not unlikely that also within undeformed, recumbent slump folds, a well-developed compaction fabric, formed parallel to the axial surface of the slump folds, may show fanning and contrasting senses of cleavage refraction on opposite fold limbs.  相似文献   

2.
The Borrowdale Volcanic rocks of Kentmere have been reinvestigated. A previous structural interpretation (Mitchell 1929) involving Caledonian isoclines superimposed upon pre-Caradocian NNE trending folds is shown to be incorrect; neither set of structures exist. The geometry of the major structural elements in the area, the Nan Bield Anticline and the Caledonoid cleavage, is described. Evidence is adduced which suggests that the anticline was formed in pre-Caradocian time as a large open fold trending approximately E-W. Its present geometry and that of the Wren Gill Monocline result from the superimposition of the regional end-Silurian cleavage obliquely and inhomogeneously across this pre-existing fold. The volcanic succession is divided into four compositionally and petrographically defined formations. In upward sequence these are the Nan Bield and Wren Gill formations (andesitic lavas and tuffs), Kentmere Formation (mainly dacitic pryoclastic rocks) and the Garbourn Formation (andesites and dacites), totalling over 2800 m. It is thought that much of this succession was deposited subaqueously.  相似文献   

3.
This paper reports an integrated, spatio-temporal analysis of the fracture-controlled paleo-fluid system in the Pico del Aguila anticline, a N–S trending fold located in the Sierras Exteriores, the southern front of the Spanish Pyrenees. Eight fracture sets (joints or faults) are recognized throughout the fold and are separated into a fracture sequence that is defined using field relationships and the remarkable temporal constraints offered by the syn-tectonic sedimentary deposits. This fracture sequence records a complex Paleocene to Early Oligocene structural evolution, including map-view, clockwise rotation and tilting of the fold axis. The geochemical analysis of calcite cements from the different mineralized fracture/vein sets reveals a compartmentalized fluid system during most of fold development. This initial paleofluid system was later perturbed when bending-related fractures associated with foreland flexure and outer arc extension triggered small-scale, vertical fluid migration. Fractures developed in shallow strata facilitated downward migration of surficial fluids that controlled the paleo-fluid system in the Late Priabonian/Stampian continental deposits. The study of the Pico del Aguila anticline depicts for the first time the evolution of a fluid system in a shallow, syn-depositional compressional setting, and results further strengthen the statement that fluids migrate vertically across stratigraphic boundaries take place during fold hinge-related deformation.  相似文献   

4.
The Sierras Australes of eastern Argentina record the progressive suturing of the Patagonian terrane with the South American craton during Permo-Triassic time. On the South American side of the suture, fold axes and axial plane cleavage show a systematic variation in orientation across the region, rotating counterclockwise from the southern and central segments to the northwestern segments. These data, in combination with finite strain measurements indicative of extension parallel to fold axes, suggest progressive, horizontal, simple shear with a left-lateral sense. Thus, the suturing probably had a strong, transpressive component. This conclusion explains the characteristic sigmoidal shape of the sierras and is supported by comparison with scale-model experiments conducted by other investigators. Furthermore, this interpretation is in agreement with paleomagnetic data.  相似文献   

5.
Analysis of the mesoscopic structure of the early Paleozoic Shoo Fly complex, northern Sierra Nevada, California, reveals three phases of deformation and folding. The first phase of folding is pre-Late Devonian and the second two are constrained by regional relations as due to the Late Jurassic Nevadan orogeny. Main phase Nevadan deformation produced penetrative slaty cleavage which is steep, NNW-trending and parallel to tectonostratigraphic terranes of the region. Cleavage is axial-planar to ubiquitous isoclinal similar folds. Fold axes define a NNW-trending girdle with a distinct, near-vertical maximum. Main phase Nevadan folds have nearly ideal class 2 orthogonal thickness geometry although some class 1C forms exist in more competent units. The overall geometry of main phase folds suggests formation by progressive deformation in a flattening regime with cleavage as the flattening plane and a steep extension axis defined by the fold axis maximum. A steep extension axis direction for main phase Nevadan deformation is supported by analysis of interference relations where folds of this generation deform pre-Late Devonian folds. Late Nevadan folds range from kink flexures to ideal class 2 similar folds with incipient axial-planar cleavage. The kinematic significance of late Nevadan folds cannot be evaluated because of their varying style and orientation throughout the northern Sierra Nevada.Penetrative ductile deformation and near-vertical extension during the Nevadan orogeny was synchronous with accretion of oceanic and/or island arc rocks against the western margin of the northern Sierra Nevada. The kinematic framework of deformation defined for Nevadan deformation is consistent with essentially orthogonal convergence of these exotic terranes with the Sierran margin and argues against a transform/transpressive regime.  相似文献   

6.
Neutral surface folding is a significant contributor to fold development. This mechanism produces contrasting strains in the inner and outer arcs of the folded layer that arise from principal stress orientations that are approximately parallel and perpendicular to the layer. We demonstrate that such stress patterns imply significant gradients of mean stress across the folding layer, being more tensional on the outer arc and more compressive in the inner arc. This could pump fluids towards the outer arc during folding and result in heterogeneous volume changes. We conclude that the neutral surface folding model should be adapted to accommodate volumetric strains, in order to explain dilatational structures (e.g. open fractures, veining) on the extrados and volume-loss structures (e.g. pressure solution seams, stylolitic cleavages) on the intrados. This dilatation has economic implications as it allows prediction of sites of mineralization and zones of secondary permeability in fold-related hydrocarbon traps.  相似文献   

7.
The Niagara fault is believed to represent the suture between a magmatic arc terrane and a passive margin assemblage which were tectonically juxtaposed about 1.85 Ga ago during the Penokean orogeny. Accretion-related deformation is concentrated within an ~12 km wide belt that straddles the suture. A distinctive structural feature of this belt is the rotation of early fold axes toward parallelism with the direction of bulk extension, resulting in a great-circle stereonet distribution of fold axes within a vertical axial plane. Rocks of both arc and passive margin assemblages crop out in this more highly-strained belt, but there has been no material transfer between them across the fault. Structural style and metamorphic assemblages demonstrate deep-level (beneath the brittle—ductile transition) erosion of the terrane accretion boundary in the southern Lake Superior region. There is some evidence for pure shear during the accretion event, but we are unable to evaluate the amount or sense of simple shear.  相似文献   

8.
Experiments have been carried out to study the effects of progressive deformation on the shape of folds and the variation in two-dimensional strains on cross-sections of singlelayer folds in a less competent matrix, in a pure-shear plane-strain deformation box with no volume change. The layer shortening continues after buckling has set in, leading to thickening of the fold hinge and with progressive buckling the layer elongates. During the layer elongation stage of folding the hinges continue to thicken, whereas the limbs thin out. Concentric folds are a combination of Class 1a type in the outer arc which gradually change to Class Ib type and then to Class 3 folds of Ramsay (1967) in the inner arc. Tangential longitudinal strains and shearing strains predominate in the fold-hinge zone and in the fold limbs of the buckling layer, respectively. Initially, uniform layer-flattening strains perpendicular to the layering develop which become extensive strains in the outer fold arc and compressive strains in the inner fold arc with progressive buckling. In the outer fold arc the extensive strains are distributed laterally over a wider zone and are of a lower magnitude than the compressive strains which are restricted to a narrow zone in the inner fold arc. The neutral surface first appears when the initial layer-flattening strains are removed due to extensive strains on the outer arc and with progressive buckling migrates towards the inner fold arc and extends laterally on the outer fold arc.  相似文献   

9.
川西松潘-甘孜弧前盆地的形成及演化   总被引:10,自引:0,他引:10       下载免费PDF全文
地处柴南缘昆中蛇绿杂岩带与羌塘地块北缘可可西里—金沙江古缝合线之间的松潘—甘孜褶皱带(包括东昆仑构造带),其主体应属古特提斯洋晚石炭世一晚三叠世时期向其北侧的柴达木古陆南缘俯冲过程中在活动陆缘弧—沟间隙之间增生形成的一个大型弧前构造带。具有由弧前盆地沉积楔和基底增生杂岩构成的双重结构特点,其形成与冈瓦纳大陆北缘若尔盖“三角”地块的楔入及俯冲带向南迁移有关。大致经历了晚石炭世一早三叠世狭窄弧前盆地和中晚三叠世宽阔弧前盆地两个主要演化阶段。  相似文献   

10.
An association of westerly verging asymmetric folds, easterly dipping cleavages and contractional faults control the pattern and intensity of structures at different scales in the southern Nallamalai fold–fault belt, Cuddapah district of Andhra Pradesh, Southern India. Variation in structural geometry is manifested across the section by the occurrence of relatively low amplitude folds, sometimes only a monocline and by the near absence of contractional faults in the WSW, but tight to isoclinal folds with frequent fold–fault interactions through the central areas towards ENE.The relationships of structural elements in terms of orientation, style, sense of movement and general vergence indicate their development under a progressive contractional deformation. The structures are interpreted to result from a combination of bulk inhomogeneous shortening across the belt and a top-to-west, variable simple shear. Localized developments of crenulation cleavage, rotation of cleavage in the shorter limbs of some mesoscale asymmetric folds and general variation of structural elements in morphology and associations across the belt, indicate partitioning of deformation and a varying degree of non-coaxiality in discrete domains of the bulk deformation.  相似文献   

11.
通过分析大量资料并结合野外地质工作,对三峡库区的区域构造背景及巴东组的主要构造样式进行了总结,分析了这些地质要素对三峡库区变形斜坡形成和发展的影响.三峡库区位于大巴山弧形构造带与八面山弧形构造带的接合部,构造变形强烈,构造样式多样.三峡库区特定的历史构造条件为巴东组深厚层松散斜坡的发育准备了变形条件.造成三峡库区发育深厚层松散斜坡的构造主要包括褶皱、多层次的顺层滑脱构造、强烈发育的劈理等.  相似文献   

12.
We examine the development of the Yanjinggou anticline, a fault-propagation-fold in the southern Longmen Shan, through an integrated study of structural geometry, strain, and paleomagnetism. The 3-D structural and strain restoration models generated in our analysis reveal that the NE-trending Yanjinggou fold has a curved map trace that is convex to the southeast. The fold has three distinct regions characterized by different strain patterns: contraction in the core of the fold, extension in the outer arc, and a forelimb with distributed shear. To further understand the kinematics of the Yanjinggou anticline, we performed paleomagnetic analysis on 184 oriented samples collected across the structure. Anisotropy of magnetic susceptibility (AMS) measurements and stepwise thermal demagnetization were conducted. A strike test was applied to the high temperature component (HTC) in order to identify rotation around the arc. The result indicates that the Yanjinggou anticline is a progressive arc, with a minor initial curvature and a dominant secondary curvature related to vertical-axis rotation synchronous with thrusting. The primary curvature and initial development of the structure correlates with the growth of the southern Longmen Shan in Late Miocene. The secondary curvature correlates with displacement extending since Late Pleistocene toward the southeast into the central basin along the detachments that underlie the structure. Lateral gradients in displacement along this underlying detachment provide a mechanism for producing the vertical rotation of the anticline. AMS results and historical earthquake analysis imply that the fault-propagation fold, along with other NE trending structures in the southern Sichuan basin, are tectonically active and accommodate east-west crustal shortening in the basin. By integrating 3-D structural and strain restoration modeling with systematic AMS and paleomagnetic methods using statistical analysis, we closely constrain how the Yanjinggou anticline developed, and provide insights into the formation of fault-related folds with curved shapes in map view, which are common in other fold-and-thrust belts around the world.  相似文献   

13.
The Late Silurian to Middle Devonian Calliope Volcanic Assemblage in the Rockhampton region is deformed into a set of northwest‐trending gently plunging folds with steep axial plane cleavage. Folds become tighter and cleavage intensifies towards the bounding Yarrol Fault to the east. These folds and associated cleavage also deformed Carboniferous and Permian rocks, and the age of this deformation is Middle to Late Permian (Hunter‐Bowen Orogeny). In the Stanage Bay area, both the Calliope Volcanic Assemblage and younger strata generally have one cleavage, although here it strikes north to northeast. This cleavage is also considered to be of Hunter‐Bowen age. Metamorphic grade in the Calliope Volcanic Assemblage ranges from prehnite‐pumpellyite to greenschist facies, with higher grades in the more strongly cleaved rocks. In the Rockhampton region the Calliope Volcanic Assemblage is part of a west‐vergent fold and thrust belt, the Yarrol Fault representing a major thrust within this system.

A Late Devonian unconformity followed minor folding of the Calliope Volcanic Assemblage, but no cleavage was formed. The unconformity does not represent a collision between an exotic island arc and continental Australia as previously suggested.  相似文献   

14.
The Tulungwan-Chaochou Fault system in southern Taiwan represents the boundary between a slate belt of moderate metamorphic grade and a relatively unmetamorphosed fold-and-thrust belt. The offset between hanging wall and footwall of this fault ranges from 7 to 11 km and is considered one of the major tectonostratigraphic faults in Taiwan. This 75-km-long fault system is also one of the most conspicuous topographic features in Taiwan. The geometry, kinematic history and associated subsidiary structures have not been resolved. Field mapping of fabrics and brittle faults show that a 45-km-long west-northwest-vergent antiform defined by folded slaty cleavage exists in the hanging wall of the fault. This antiform has not been previously described and apparently formed in a brittle environment. The flat crest and tight forelimb of the antiform suggests a two-stage deformation model composed of a fault-bend fold followed by a trishear fold. We infer that regional scale fold is associated with a thrust that splays upward from the main detachment.  相似文献   

15.
A new method to estimate strain and competence contrast from natural fold shapes is developed and verified by analogue and numerical experiments. Strain is estimated relative to the nucleation amplitude, AN, which is the fold amplitude when the amplification velocities caused by kinematic layer thickening and dynamic folding are identical. AN is defined as the initial amplitude corresponding to zero strain because folding at amplitudes smaller than AN is dominantly by kinematic layer thickening. For amplitudes larger than AN, estimates of strain and competence contrast are contoured in thickness-to-wavelength (H/λ) and amplitude-to-wavelength (A/λ) space. These quantities can be measured for any observed fold shape. Contour maps are constructed using existing linear theories of folding, a new nonlinear theory of folding and numerical simulations, all for single-layer folding. The method represents a significant improvement to the arc length method. The strain estimation method is applied to folds in viscous (Newtonian), power-law (non-Newtonian) and viscoelastic layers. Also, strain partitioning in fold trains is investigated. Strain partitioning refers to the difference in strain accommodated by individual folds in the fold train and by the whole fold train. Fold trains within layers exhibiting viscous and viscoelastic rheology show different characteristic strain partitioning patterns. Strain partitioning patterns of natural fold trains can be used to assess the rheological behaviour during fold initiation.  相似文献   

16.
拉卡兰褶皱带中,发育于Ballarat-Bandigo冲断带中的低级变质砂、泥岩的宏观构造以间离劈理和人字形褶皱为特征,而且劈理在褶皱中呈扇形发育。劈理和褶皱的几何关系分析显示:劈理和褶皱的形成为压溶作用、压扁作用、弯曲作用和被动旋转共同作用的结果,而褶皱砂、泥岩中变形构造则以与压溶作用和再沉淀过程有关的显微构造为其典型特征。Fry法进行的全岩应变测量显示,褶皱砂岩的内部应变相当低(X/Z=1.40—1.83),褶皱应变格局给出变形机制的信息包括:缩短过程中的压扁作用和压溶作用、褶皱过程中由弯滑导致的层平行剪应变、以及褶皱后期发育阶段内弧区强烈的压溶作用。宏观构造、显散构造以及应变特征多方面信息证明:低级变质的沉积岩在褶皱变形过程中,压溶作用为一重要的变形机制。应变分解显示在30%—50%的总地壳水平缩短量下,弯曲导致的缩短最为14%—36%,压扁导致的缩短量为3%—14%,压溶导致的缩短量为8%—26%,而且压溶作用主要发生在褶皱内弧区。  相似文献   

17.
In southwest Ireland an Upper Devonian to Lower Carboniferous clastic succession was deposited in an ENE–WSW trending half-graben, known as the South Munster Basin. Across the Galley Head peninsula on the south coast, this stratigraphical succession is attenuated due to the presence of a palaeogeographical feature called the Glandore High. Evidence suggests that the Glandore High was an east–west feature, faulted to the north and east, which was part of the southern flank (hangingwall rollover) of the South Munster Basin. During post-Carboniferous Variscan deformation the relatively thin stratigraphy of Galley Head underwent prolonged folding, causing a local periclinal fold pair to develop within the hinge zone of a regional syncline. The main cleavage then developed parallel to bedding on the overturned south limb of the anticline of this fold pair. The local enhanced shortening caused the development of a structural culmination, and south facing, tight to isoclinal folds. The culmination was enhanced and tightened by a fault system of contractional, strike-parallel faults linked by cross faults. Secondary folds occur across the hinges of regional anticlines and also on major fold limbs as isolated fold pairs and in monoclinal fold zones, some of which may have nucleated on irregular sandstone bodies. Local crenulation cleavages are related to late fault movements. Syn-cleavage, conjugate, wrench faults record 10 per cent to 15 per cent strike-parallel extension in the culmination. The deformation chronology of the Galley Head area is somewhat anomalous for the Irish Variscides in that the folds were well established before the onset of the main cleavage development. The enhanced shortening across the area was compartmentalized by major cross faults and a minor component of north–south sinistral shear was also active across the area causing a swing in strike and a late set of minor cross faults. Structural facing directions in southwest Ireland appear to be directly linked with the geometry of the deformed basins. Hence the southward facing along the south coast is due to the proximity of the southern margin of the South Munster Basin. Structural facing directions fan northwards across the basin and major folds are overturned to the north at the northern margin of the basin.  相似文献   

18.
In any one area of the Stirling Range Proterozoic low-grade fold-foreland, the first phase of folding to be associated with cleavage development has generated two inclined tectonic fabrics each of which is closely related in geometry to the folds. The most likely fold history has been determined by comparing predictions of theoretical fold mechanisms against the observed field relations and strain states seen in an arenite and minor mudrock multilayer. In an initial phase of folding dominated by layer-parallel shortening, a well-spaced mica-band cleavage was, initiated, intensified, and able to maintain a near axial plane relationship, until body rotation of limbs took over at a fold dihedral angle of about 140°. The resultant 70° angle between solution cleavage and bedding on the fold limbs was preserved by flexural slip until the fold had tightened to about 100° when, for mechanical reasons, flattening rapidly became important. During this phase, a mica-film cleavage, with grainscale spacing, developed approximately axial planar and the solution cleavage/bedding angle on the limbs was reduced to 55°.  相似文献   

19.
松潘—甘孜褶皱带较场弧形构造特征及其大地构造意义   总被引:1,自引:0,他引:1  
根据详细野外露头特征及显微构造特征将较场弧形带由南向北分为三个变形带:弧顶部、弧核部和弧翼部,不同分带具有明显不同的变形特征。由南向北变形特征由以塑性变形为主过渡为脆性变形为主,变质流体活动喜马拉雅构造期活动强烈,且向北逐渐增强;弧核部以叠瓦状逆冲构造特征分隔弧顶和弧翼部;弧翼部东西两翼变形及变质流体活动特征具有一定差异性。较场弧形带总体体现出多期次南北向挤压—张性应力变形构造特征,叠加北西—北北西向同构造期挤压变质运动,其宏观和微观变形特征与典型"走滑成因"模式弧形构造特征相异,为其大地构造成因机制的解释提出了新的限制条件。  相似文献   

20.
《Journal of Structural Geology》1999,21(8-9):1089-1101
A new simplified genetic classification scheme for arcuate fold–thrust belts is proposed. Based on total strain patterns and displacement vector fields, we distinguish three extreme end-member models: (1) `Oroclines', pure bending of an initially straight belt, (2) `Piedmont glacier' with divergent transport directions and (3) `Primary arcs'. A simple geometric model set-up for the simulation of strain patterns in primary arcs with uniform transport direction demonstrates that divergent strain trajectories and rotations of passive marker lines do not require any divergence in displacement directions. These often quoted arguments are insufficient for the identification of `Oroclinal bending' or `Piedmont glacier' type of arc formation. Only three-dimensional restorations of an arc provide the critical information about displacement directions. In their absence, arc parallel stretches and rotations in comparison with total strains provide the most useful criteria for the distinction of arc formation modes. As an example, the Jura fold–thrust belt of the external Alps is discussed. A large set of strain data includes total shortening estimates based on balanced cross-sections, local strain axes orientations from the inversion of fault populations [Homberg, C., 1996. Unpublished PhD thesis, Université de Paris VI (France)], tectonic stylolites and micro-strains from twinning in sparry calcite. Strain trajectories (maximum shortening direction) computed from these data define a strongly divergent fan with a 90° opening. A complete displacement vector field for the entire Jura has been determined from balanced cross-sections augmented with three-dimensional `block mosaic' restorations [Philippe, Y., 1995. Unpublished PhD thesis, Université de Chambéry (France)]. Displacement vectors diverge by about 40°, markedly less than strain trajectories. The non-parallelism between strain trajectories and transport directions indicates that considerable wrenching deformation did occur in both limbs of the Jura arc. Paleomagnetically determined clockwise rotations of 0–13° from ten sites (Kempf, O., et al., Terra Nova 10, 6–10) behind the right-hand half of the Jura arc and two sites with a combined 23° anticlockwise rotation behind the left-hand half of the arc are and additional argument in favor of such a wrenching deformation. We conclude that the Jura arc formed as a `Primary arc' with a minor component of `Piedmont glacier' type divergence in transport directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号