首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
编辑部 《地质论评》2012,58(5):10001-10004
目录  相似文献   

2.
A small (360 × 180 m) rhyolitic intrusive body in the lower portion of the Portage Lake Lava Series of Michigan's Keweenaw peninsula was mapped and sampled in detail. The rhyolite is one of a number of similar bodies which make up less than 1% of the total volume of this thick Late-Precambrian plateau basalt pile. The rock is a low-calcium rhyolite with fine-grained homogeneous texture and sparse phenocrysts of plagioclase and quartz. Analyses of selected trace and major elements for 21 samples taken from the body reveal a chemical zonation consisting of a core zone enriched in K, Rb and Ba, and a border zone relatively poor in these elements. Little areal difference is found with respect to other elements tested (Mn, Sr, Zr, Ca, Ti, and Fe). This apparently primary zonation seems to result from the migration of K, Rb and Ba during crystallization of the shallow intrusive. Though zoned, the trace-element chemistry of the Fish Cove body is distinct from that of eight other rhyolites in the Portage Lake Lava Series, and suggests that fingerprinting by trace elements might be a fruitful method for identifying and correlating the sources of numerous rhyolitic pebbles in conglomerates interbedded with the basaltlava flows of the Portage Lake Series.  相似文献   

3.
4.
The Ishpeming Greenstone Belt is an Archean belt in the southern part of the Canadian Shield in the Upper Peninsula of Michigan, U.S.A. Two volcanic cycles are preserved in it. The oldest formation, and basal to the first cycle (the Kitchi Schist), consists of mafic metavolcanics, has a major serpentinized ultramafic body near its base, and grades upward to a coarse felsic volcanic breccia at the top of the cycle. This unit in turn is overlain by a sequence of mafic flows that grades upward to interbedded mafic flows and exhalites of the Mona Schist. This sequence has been intruded by the Dead River Pluton.The Ishpeming Greenstone Belt probably represents the keel of a previously much more extensive Greenstone Belt.Gold mineralization occurs associated with mafic basaltic volcanic rocks and serpentinized ultramafics low in the succession, and with carbonate-rich quartz-chlorite-sericite schists and exhalites higher in the sequence. No mineral deposits are now being exploited here.  相似文献   

5.
6.
7.
The Llano uplift exposes rocks of approximately 1000 m.y. age. The weighted average composition of the exposed crust is: 70.7% SiO2; 0.35% TiO2; 13.6% A12O3; 3.4% total Fe as Fe2O3; 1.1% MgO; 2.6% CaO; 3.3% Na2O; and 4.4% K2O. This composition is similar to, but more potassic, than equivalent estimates for the Canadian shield.  相似文献   

8.
9.
The West Farrington pluton in the North Carolina Piedmont isconcentrically zoned from gabbro-diorite near the chilled marginsto leucogranodiorite in the center. A crystallization modelfor the West Farrington pluton has been derived utilizing chemical,petrographic, field, and experimental data. The model involvessimple in situ fractional crystallization from the margins inward,with minimal contamination, crystal settling and floating, ormetasomatism. Rocks of the pluton can be considered as mixturesof early crystallizing minerals (liquidus or near-liquidus phases)and crystallized interstitial liquids. Relative percentage ofentrapped pore liquid increased with increasing degree of crystallization. The original tonalite magma began crystallizing Fe-Ti spinels,plagioclase, and hornblende within a short temperature interval.Crystallization of these minerals controlled fractionation trends.The initial water content in the magma was probably 2–3per cent; under such conditions water saturation would havebeen reached after about 60 per cent of the magma crystallized,assuming crystallization in the lower epizone at about 2000bars total pressure.  相似文献   

10.
Loading trends and sources of CI in the South Fork of the Shenandoah River, Virginia were analyzed for the period 1929–1982. CI has increased from approximately 2 mg/L (2,776 tons/yr) to over 10 mg/L (14,256 tons/yr). Natural CI is estimated to be 1.01 mg/L (1,388 tons/yr) with precipitation providing 0.99 mg/L and rocks 0.02 mg/L. From 1929 to 1949 CI concentrations were relatively constant and independent of discharge, conforming to the Type II curve of Davis and Zobrist (1978), indicative of natural or relatively uncontaminated streams. Since 1952 CI concentrations increased exponentially as river discharge decreases conforming to the Type I curve of Davis and Zobrist for polluted streams. Since 1965 anthropogenic CI loading at 12,868 tons/yr has remained relatively constant. Four major sources contribute 92.2 percent (11,871 tons/yr) of the anthropogenic CI: (1) deicing salts—4,149 tons/yr, (2) domestic sewage—3,015 tons/yr, (3) livestock and poultry wastes—2,458 tons/yr, and (4) commercial fertilizers—2,249 tons/yr.  相似文献   

11.
12.
13.
14.
Polymetallic hydrothermal vein mineralisation of the Ag-Ni, Co Arsenide type, and containing Bi and U, occurs in three mines and five uneconomic veins in the Camsell River area. Each occurrence is described in detail. The veins lie in sulphide-impregnated volcanic rocks of the Aphebian Great Bear Batholith. Large, NE-trending strike-slip faults were initiated during the terminal phases of orogeny (1750 m.y.), and were active intermittently for at least 300 m.y. The veins are located in splays and tension-fractures form the primary faults, and mineralised lenses are found in dilatant zones in these structures. The mineralisation shows a generalised paragenesis of U → Ag+arsenides → Bi, Sulphides, Sulphosalts, but there are variations. A model is presented to explain the temporal and spatial controls of mineralisation and to explain the perturbations in the paragenesis. It is concluded that the mineralisation is of magmatic origin and lateral secretion models are rejected. Discussions of the ultimate origin of the ore elements are not presented here.  相似文献   

15.
Summary The Golden Sunlight gold-silver telluride deposit, hosted primarily within the Mineral Hill breccia pipe (MHBP), is spatially related to a high-level, Late Cretaceous multiple intrusive, alkaline to subalkaline porphyry system. Base metal veins and manganese (rhodochrosite) mineralization occur up to 2km from the MHBP and form part of a regional mineral zonation pattern genetically related to a low-grade porphyry molybdenum system. Proterozoic rocks of the LaHood Formation and the informally named Bull Mountain Group host the MHBP and contain stratabound sulphides/ sulphosalts (up to 50% pyrite with minor to trace amounts of chalcopyrite, tennantite, pyrrhotite, sphalerite, galena, and molybdenite). Four periods of hypogene mineralization occur in the breccia pipe. Stages I and IV constitute ,99% of the mineralization; native gold (4–11 wt.% Ag), calaverite, tetradymite, tellurobismuthite, Se-bearing Bi sulphosalts (aikinite, lindströmite, krupkaite, gladite, bismuthinite, and ?benjaminite), tennantite (Zn, Fe, Te, and Bi varieties), coloradoite, melonite, galena (up to 6.7 wt.% Bi and 6.4 wt.% Se), stannite, chalcocite, and the rare mineral buckhornite are included in stage Ib. Minor amounts of base metals are present in stage II. Gold-silver tellurides (krennerite, petzite, sylvanite, and possibly the rare x-phase) developed in stage III whereas barite, fluorite, dolomite, magnesite, trace kaolinite, and sericite formed during stage IV. Utilizing the mineral assemblages in stage Ib, calculated values of logf Te2 and logf S2 range from -10.5 to -9.7, and -12.6 to -5.5, respectively.Ore forming components (e.g., Au, Ag, Te, Cu, Bi, Mo, and much of the S) were likely derived from the Late Cretaceous intrusive system with possible contributions from the Proterozoic host rocks.
Mineralogie der Golden Sunlight Gold-Silber-Tellurid-Lagerstätte, Whitehall, Montana
Zusammenfassung Die Golden Sunlight Gold-Silber-Tellurid-Lagerstätte, die hauptsächlich im Brekzienschlot von Mineral Hill (Mineral Hill breccia pipe, MHBP) eingelagert ist, steht räumlich mit einem erzreichen, multi-intrusiven, alkalischen bis sub-alkalischen Porphyritsystem aus der Oberkreide in Beziehung. Erzadern und Mn-Mineralisation (Rhodochrosit) finden sich bis zu 2 km vom MHBP entfernt und sind Bestandteil einer regionalen Vererzung die genetisch zu einem erzarmen Mo-hältigen Porphyritsystem in Beziehung steht. Proterozoische Gesteine aus der LaHood-Formation und der inoffiziell benannten Bull Mountain Group umgeben den MHBP und enthalten schichtgebundene Sulfide und Sulfosalze (bis zu 50% Pyrit mit Neben- bis Spurenmengen von Kupferkies, Tennantit, Pyrrhotin, Zinkblende, Bleiglanz und Molybdänit).[Der Brekzienschlot zeigt vier Phasen hypogener Mineralisation. Stufen I und IV enthalten 99% der Mineralisation: gediegen Gold (4–11 Gew.% Ag), Calaverit, Tetradymit, Tellurobismuthit, Se-hältige Bi-Sulfosalze (Aikinit, Lindströmit, Krupkait, Gladit, Bismuthinit und ?Benjaminit) Tennantit (Zn-, Fe-, Te- und Bi-Varietäten), Coloradoit, Melonit, Bleiglanz (mit bis zu 6.7 Gew.% Bi und 6.4 Gew.% Se), Zinnstein, Chalcocit, sowie das seltene Mineral Buckhornit treten in Stufe Ib auf. Geringere Mengen von Buntmetallen kommen in Stufe II vor. Gold-Silber-Telluride (Krennerit, Petzit, Sylvanit und möglicherweise die seltene X-Phase) sind in Stufe III ausgebildet und in Stufe IV wurden Baryt, Flusspat, Dolomit, Magnesit, Spuren von Kaolin und Serizit gebildet. Unter Verwendung der Mineralassoziationen der Stufe Ib lassen sich Werte von logf Te2 zwischen - 10.5 und - 9.7 und von logf S2 zwischen - 12.6 und - 5.5 errechnen.[Die erzbildenden Komponenten (z.B. Au, Ag, Te, Cu, Bi, Mo und der Grossteil von S) stammen wahrscheinlich vom Intrusivsystem aus der Oberkreide, möglicherweise mit Beiträgen der proterozoischen Umgebung.[/ p]


With 10 Figures  相似文献   

16.
17.
The Fetterman Mammoth locality, eastern Wyoming, U.S.A., produced the remains of a single subadult mammoth and a small lithic assemblage. This paper employs a fine‐grained taphonomic approach to investigate the events responsible for the deposit's creation. No cultural modifications were noted on any of the specimens. Long axis orientations plotted against a reconstruction of the depositional surface suggest limited postdepositional movement of individual disarticulated elements. Weathering patterns based on in situ upside and downside positioning document two discrete episodes of sedimentation. These results suggest that the mammoth remains and the cultural assemblage may be separated by at least one depositional event and, as such, their association is considered equivocal. © 2002 Wiley Periodicals, Inc.  相似文献   

18.
19.
20.
Mt. St. Hilaire occurs as a small funnel-shaped intrusion in the Monteregian petrographic province of Quebec and consists of alkali gabbros and later nepheline syenites. Based on field relations, petrography, and geochemistry, five types of gabbro are recognized. In order of intrusion these are: leucogabbro, foliated gabbro, kaersutite-biotite gabbro, kaersutite gabbro, and a gabbro-melagabbro series. Based on analyses of the early-forming ilmenite-titanomagnetite, the gabbros crystallized under high fO2 conditions which lead to subsequent crystallization of olivines with high MnO contents. Fractionation of ilmenite and titanomagnetite was a major control on the Ti and A[TV]concentrations in the clinopyroxenes. Plagioclase compositions in the gabbros became richer in Ab contents in the sequence gabbro-melagabbro to leucogabbro. Whole-rock analyses suggest that the parental magma of alkali basaltic composition was fairly evolved prior to emplacement. Lack of olivine in the cumulate gabbro-melagabbros and low Ni and Cr in all gabbros may reflect either extreme olivine fractionation and/or a very low olivine content in the source material for these basalts. Differentiation of the gabbros occurred both pre- and post-emplacement, probably by a process of crystal-liquid fractionation at depths between 3-5 and 8 km. This is in accordance with geophysical measurements for other Monteregian intrusions. A model is presented for the mechanism of emplacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号