首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical simulations and parametric studies have been used to investigate the influence of potential poundings of seismically isolated buildings with adjacent structures on the effectiveness of seismic isolation. Poundings are assumed to occur at the isolation level between the seismically isolated building and the surrounding moat wall. After assessing some common force‐based impact models, a variation of the linear viscoelastic impact model is proposed to avoid tensile impact forces during detachment, while enabling the consideration of permanent plastic deformations at the vicinity of the impact. A large number of numerical simulations of seismically isolated buildings with different characteristics have been conducted under six earthquake excitations in order to investigate the influence of various design parameters and conditions on the peak floor accelerations and interstorey deflections during poundings. The numerical simulations demonstrate that poundings may substantially increase floor accelerations, especially t the base floor where impacts occur. Higher modes of vibration are excided during poundings, increasing the interstorey deflections, instead of retaining an almost rigid‐body motion of the superstructure, which is aimed with seismic isolation. Impact stiffness seems to affect significantly the acceleration response at the isolation level, while the displacement response is more insensitive to the variation of the impact stiffness. Finally, the results indicate that providing excessive flexibility at the isolation system to minimize the floor accelerations may lead to a building vulnerable to poundings, if the available seismic gap is limited. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The Building Standard Law of Japan and related Enforcement Order and Notifications have been substantially revised since the year 2000 to introduce a performance-based regulatory and deregulation system for building control systems. Up to then, time-history analyses were mandatory for isolated buildings and had to be specially approved by the Minster of the Ministry of Construction (MOC). Simplified design procedures based on the equivalent linear method for seismically isolated buildings have been issued as “Notification 2009 — Structural calculation procedure for buildings with seismic isolation” from MOC, and are now integrated into the Ministry of Land, Infrastructure, and Transportation (MLIT). Along with Notification 2009, “Notification 1446 of year 2000 — Standard for specifications and test methods for seismic isolation devices” was also issued. Buildings with heights equal to or less than 60m and that are designed according to these Notifications, including base isolated buildings, only need approval from local building officials, and no longer require the special approval of the Minister of MLIT. This paper summarizes: 1) some statistics related to buildings with seismic isolation completed up to the end of 2001; 2) simplified design procedures required by Notification 2009 of year 2000; and 3) performance of seismic isolation devices required by Notification 1446 of year 2000.  相似文献   

3.
规则型隔震房屋的自振特性和地震反应分析方法   总被引:15,自引:3,他引:15  
文中根据规则型隔震房屋的刚度、质量和阻尼分布的特点,改进了阻尼比的简化计算表达式。此外还归纳给出了自振周期、振型和地震反应计算公式。文中还将我们提出的隔震结构振型阻尼比公式与Kelly的相应公式进行了数值比较,两式的复杂程度虽几无差异,但文中的公式更为精确。文中提出的简化计算公式可以方便地在一般房屋结构隔震方案设计和地震反应的振型叠加分析中应用。  相似文献   

4.
The mid‐story isolation design method is recently gaining popularity for the seismic protective design of buildings located in the areas of high population. In a mid‐story isolated building, the isolation system is incorporated into the mid‐story rather than the base of the building. In this paper, the dynamic characteristics and seismic responses of mid‐story isolated buildings are investigated using a simplified three‐lumped‐mass structural model for which equivalent linear properties are formulated. From the parametric study, it is found that the nominal frequencies of the superstructure and the substructure, respectively, above and below the isolation system have significant influences on the isolation frequency and equivalent damping ratio of a mid‐story isolated building. Moreover, the mass and stiffness of the substructure are of greater significance than the superstructure in affecting the dynamic characteristics of the isolated building. Besides, based on the response spectrum analysis, it is noted that the higher mode responses may contribute significantly to the story shear force of the substructure. Consequently, the equivalent lateral force procedure of design codes should carefully include the effects of higher modes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Although the ability to simulate accurately the detailed behavior of nonlinear isolation bearings and the effects of this nonlinearity on dynamic response of the isolated building is desirable, such detailed analyses are not feasible during initial design stages when bearing properties are being selected. However, it would be very beneficial to be able to estimate accurately key engineering demand parameters at the early stages of design to understand the dynamic response characteristics of the isolated structure and to balance and optimize the bearing and structural characteristics to achieve the performance goals set for the building. Unfortunately, classical modal response spectrum analysis methods do not provide accurate results for problems with large, nonclassical damping, as is characteristic of isolated buildings. To find a method capable of predicting peak building responses even with large nonclassical damping, generalized modal response spectrum analysis is implemented. The responses of several buildings having different heights and isolated by linear viscous as well as triple friction pendulum and single friction pendulum isolation systems are investigated. Generalized modal response spectrum analysis methods were found to give significantly better predictions for all systems compared with classical methods. The behavior of buildings isolated with single friction pendulum systems exhibiting sudden changes in stiffness could not be well predicted by either general or classical modal response spectrum analysis when effective damping was increased. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
For the public welfare and safety, buildings such as hospitals, industrial facilities, and technology centers need to remain functional at all times; even during and after major earthquakes. The values of these buildings themselves may be insignificant when compared to the cost of loss of operations and business continuity. Seismic isolation aims to protect both the integrity and the contents of a structure. Since the tolerable acceleration levels are relatively low for continued services of vibration-sensitive high-tech contents, a better understanding of acceleration response behaviors of seismically isolated buildings is necessary. In an effort to shed light to this issue, following are investigated via bi-directional time history analyses of seismically isolated benchmark buildings subject to historical earthquakes: (i) the distribution of peak floor accelerations of seismically isolated buildings subject to seismic excitations in order to find out which floors are likely to sustain the largest accelerations; (ii) the influence of equivalent linear modeling of isolation systems on the floor accelerations in order to find out the range of possible errors introduced by this type of modeling; (iii) the role of superstructure damping in reducing floor accelerations of seismically isolated buildings with flexible superstructures in order to find out whether increasing the superstructure damping helps reducing floor accelerations notably. Influences of isolation system characteristics and superstructure flexibility are both taken into account.  相似文献   

7.
This paper presents selected indicative results from an extensive parametric investigation that has been performed in order to assess the effects of potential earthquake‐induced poundings on the overall dynamic response of seismically isolated buildings. In particular, a seismically isolated building and its adjacent fixed‐supported buildings are subjected to various earthquake excitations that induce structural impact among the buildings in series. The results indicate that the seismically isolated building may hit against the adjacent buildings at the upper floor levels before the occurrence of any pounding at the isolation level with the surrounding moat wall. The severity of the impact depends on the dynamic properties of the adjacent buildings, in combination with the earthquake characteristics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper we study the sensitivity of seismically isolated structures to a small variability of the earthquake excitation and of some structural properties with respect to the probability of failure and floor spectra. In particular, the influence of the nonlinear behaviour of the isolated superstructure on the vulnerability and on the floor spectra is investigated by means of a series of Monte Carlo simulations of simple two degrees‐of‐freedom systems. Several types of passive and active isolation systems are examined and three different idealized nonlinear constitutive laws are considered for the superstructure. It is found that, in general, the probability of failure does not depend on the specific cyclic behaviour of the assumed constitutive law and general trends regarding the impact of different isolation devices on vulnerability are established. As for the floor spectra, the influence of moderate nonlinear behaviour of isolated superstructures, with the exception of the case of a non‐dissipative elastic nonlinear law, is negligible, contrary to the case of conventional structures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Direct displacement-based design of seismically isolated bridges   总被引:1,自引:1,他引:0  
A Displacement-Based Design (DBD) procedure for bridges equipped with different seismic Isolation Systems (IS’s) is proposed. It has been derived from the Direct DBD method recently developed by Priestley and co-workers. The key aspect of the proposed procedure is the definition of a uniform target displacement of the deck, which is assigned by the designer to accomplish a given performance level, expressed through limit values of the maximum IS displacement and of the pier drift, respectively. The proposed design procedure has been developed for four different idealized force-displacement cyclic behaviours of IS’s, which can be used to describe the response of a wide variety of IS’s, including: (i) Lead-Rubber Bearings (LRB), (ii) High-Damping Rubber Bearings (HDRB), (iii) Friction Pendulum Bearings (FPB), (iv) Combinations of either Low-Damping Rubber Bearings (LDRB) or FPB and Viscous Dampers (VD), (v) Combinations of lubricated Flat Sliding Bearings (FSB) and LDRB, (vi) Combinations of FSB and Steel Yielding Devices (SYD), (vii) Combinations of FSB, Shape Memory Alloy (SMA)-based Re-centring Devices and VD. In the paper, the background and implementation of the design procedure is presented first, then some validation studies through nonlinear time-history analyses on different configurations of continuous deck and multi-span simply supported deck bridges are illustrated.  相似文献   

10.
Bulletin of Earthquake Engineering - This paper investigates the seismic loss assessment of seismically isolated and non-isolated buildings with steel moment or braced frames, designed by the...  相似文献   

11.
The use of the standing wave method to study seismically insulated buildings is substantiated. For two buildings of interest with different types of seismic protection (a “flexible” floor and rubber base insulators), the total field of standing waves is studied in detail. Effects that raise doubts about the reliability of seismic protection are found. Estimation of the role of nonlinear vibrations in standing waves has made it possible to establish that weak nonlinearity is recorded at high-frequency modes at small vibration amplitudes, due to discordant vibrations of the building components. The data obtained by the standing wave method are recommended for verifying models used to calculate seismic insulation of buildings.  相似文献   

12.
Stable unbonded fiber‐reinforced elastomeric isolators (SU‐FREIs) exhibit a characteristic horizontal softening and stiffening response, similar to other adaptive devices such as the triple friction pendulum and sliding systems with variable curvature. The transition between the softening and stiffening occurs at a displacement corresponding to a unique deformation known as full rollover. In this paper, the full rollover displacement of SU‐FREIs is altered by using modified support geometry (MSG), a geometric modification of the upper and lower supports applied to tailor the hysteresis loops of the isolator. Experimental results are used to calibrate a numerical model of a base‐isolated structure. The model demonstrates that the stiffening regime provides minimal restraint against displacements during events that meet or exceed the maximum considered earthquake. A parametric study revealed that the level of stiffening required to restrain displacements during large events is significant. This increase in stiffness is reflected in an increase in the response of the structure and light nonstructural components. Full rollover and MSG is considered advantageous to maintain horizontal stability and provide control over the stiffening of SU‐FREIs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This paper investigates the seismic response of yielding isolated structures. To establish a general understanding of the nonlinear response of seismically isolated structures, this study first investigates the nonlinear response of isolated structures subjected to steady‐state harmonic motion and nonlinear transient ground excitation. The response of both viscously damped and hysteretically damped isolation systems is investigated in three phases. Initially, basic insights are gained through simple nonlinear two degrees of freedom (2‐DOF) models subjected to harmonic motion of varying frequencies. Next, the transient response analysis of the nonlinear 2‐DOF model is investigated for a wide range of isolation system and superstructure properties. The results obtained from both approaches indicate that the yielding behavior of a structure on an isolation system is significantly different from that of the comparable fixed‐base structure. Finally, the response of the nonlinear 2‐DOF system model is compared with that of a 15‐story, three‐dimensional model. Based on the results of these analytical investigations, some important considerations for the design of seismically isolated structures are presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Probabilistic fragility functions have been developed for low-rise, reinforced concrete buildings subjected to earthquake triggered slow-moving slides, applying a recently published methodology by the same authors [5] (Fotopoulou and Pitilakis, 2012). We performed an extensive numerical parametric study considering different idealized slope configurations, soil and geological settings, as well as distances of the structure to the slope's crest and foundation typologies. Various features of the structural damage are explored, highlighting trends on the building's behavior to the permanent co-seismic slope deformations. The proposed generalized probabilistic fragility curves have been developed as a function of the expected outcrop peak ground acceleration (PGA) as provided by modern seismic codes, i.e. EC8, or the induced permanent slope ground displacements (PGD) for different slope angles, water table level and soil type, foundation typology and seismic design code. Detailed sensitivity analyses of the above parameters, reveal their relative importance for the vulnerability analysis and the quantitative risk assessment of low-rise RC buildings subjected to earthquake triggered slow-moving slides.  相似文献   

15.
The current design of seismically isolated bridges usually combines the use of bearings and stoppers, as a second line of defence. The stoppers allow the development of the in-service movements of the bridge deck, without transmitting significant loads to the piers and their foundations, while during earthquake they transmit the entire seismic action. Despite the fact that stoppers, which restrain the transverse seismic movements of the deck, are used frequently in seismically isolated bridges, the use of longitudinal stoppers is relatively rare, mainly due to the large in-service constraint movements of bridges. The present paper proposes a new type of external longitudinal stoppers, which are installed in stiff sub-structures-boundaries, aiming at limiting the bridge seismic movements. The parametric investigation, which was conducted in order to identify the seismic efficiency of the external stoppers, showed that the interaction of the bridge with the stiff boundaries can lead to significant reductions in the seismic movements of the bridge. Serviceability is appropriately arranged in the paper by expansion joints and approach slabs.  相似文献   

16.
In this paper we present control design methods that provide desirable levels of performance and simultaneously account for actuator and sensor reliability (or malfunction) for buildings under seismic excitations. Performance is defined in terms of the disturbance attenuation (i.e. L2 gain) from the disturbances to the controlled outputs of the system. The reliability of actuators and sensors refers to the deviation of actual control forces or actual sensor measurements from their ideal levels. Simulation results for a six‐storey building are used to demonstrate the effectiveness of the control analysis and design method presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Energy dissipation devices are necessary for base‐isolated buildings to control the deformation in the isolation system and to dissipate the earthquake‐induced energy. U‐shaped steel dampers (also known as U‐dampers) dissipate energy through plastic deformation of specially designed U‐shaped steel elements. This type of device can be installed at several locations in the isolation system. U‐dampers have been widely used in Japan for different types of isolated structures, such as hospitals, plants and residential buildings, since the 1995 Kobe Earthquake. Previous research has used static tests to estimate the performance of U‐dampers. However, the ultimate plastic deformation capacities and hysteretic behaviors of full‐scale U‐dampers under dynamic excitations still remain unclear. In addition, it is unclear whether the initial temperature has an effect on the hysteretic behavior and plastic deformation capacity of U‐dampers. In this paper, two series of dynamic loading tests of U‐dampers were conducted to evaluate the issues described earlier. The major findings of the study are (i) the loading speed has little effect on the plastic deformation capacity of U‐dampers; (ii) method to evaluate the ultimate plastic deformation capacities of U‐shaped steel dampers of different sizes is established using a Manson–Coffin relation‐based equation that is based on the peak‐to‐peak horizontal shear angle γt, which is defined as the lateral deformation amplitude (peak‐to‐peak amplitude) divided by the height of the dampers; (iii) the loading rate and the initial temperature have a minimal effect on the hysteretic behavior of the U‐dampers; and (iv) a bilinear model is proposed to simulate the force‐deformation relationships of the U‐dampers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This research study is aimed at evaluating the accuracy of the displacement coefficient method (DCM) of FEMA 440 and associated nonlinear static procedure (NLSP) for actual buildings with soft story mechanism and various ductility capacities. The DCM and associated NLSP are evaluated using two existing seismically vulnerable buildings with soft story mechanism. The buildings are first retrofitted using a ductile steel‐brace‐link system to represent those with good ductility capacity and then retrofitted with RC squat infill shear panels (SISPs) to represent those with relatively poor ductility capacity. The evaluation of the DCM of FEMA 440 and associated NLSP is then performed by comparing the roof displacements (target displacements), maximum interstory drifts, and maximum plastic hinge rotations of the original and retrofitted buildings obtained from NLSP (at the target displacement level of DCM) with those obtained from nonlinear response history (NRH) analyses for three different seismic performance levels. It is observed that the DCM, and hence, the NLSP fail to accurately predict the NRH analyses results mainly due to uncertainties in the coefficient C1 of the DCM in the short period range, the inability of the DCM to capture the failure of structural members beyond a certain lateral displacement or plastic rotation limit and associated soft story mechanism. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a 2-D numerical study on the nonlinear seismic response of buildings equipped with two types of energy dissipators, which dissipate energy activating two different mechanisms. Three types of reinforced concrete buildings with 3, 7 and 15 stories, respectively representative of short, medium and long period ranges, are considered. Dissipators are placed on steel diagonal braces at all the floors; their sliding threshold (or yielding) forces are taken as 100% of those generated by the equivalent static lateral forces recommended by EC8 for a ductile moment resisting frame. The input consists of six recorded earthquakes, 3 representatives of near-field earthquakes and 3 representatives of far-field earthquakes. Each input is considered once from the bedrock and once filtered by a common ground with several layers of different thicknesses. The responses of the buildings are discussed and compared emphasizing the filtering effects produced by the ground.  相似文献   

20.
Generally, the active structural control system belongs to the discrete‐time control system, and the sampling period is one of the most important factors that would directly affect the performance of the control system. In this paper, active control approaches by using the discrete‐time variable structure control theory are studied for reducing the dynamic responses of seismically excited building structures. Based on the discrete reaching law method, a feedback controller which includes the sampling period is presented. The controller is extended by introducing the saturated control method to avoid the adverse effect when the actuators are saturated due to unexpected extreme earthquakes. The simulation results are obtained for a single‐degree‐of‐freedom (SDOF) system and a MDOF shear building equipped with active brace system (ABS) under seismic excitations. It is found that the discrete variable structure control approach and its saturated control method presented in this paper are quite effective. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号