首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 494 毫秒
1.
Summary. The viscoelastic response of the Earth to the mass displacements caused by late Pleistocene deglaciation and concomitant sea level changes is shown to be capable of producing the secular motion of the Earth's rotation pole as deduced from astronomical observations. The calculations for a viscoelastic Earth yield a secular motion in the direction of 72° W meridian which is in excellent agreement with observed values. The average Newtonian viscosity and the relaxation time obtained from polar motion data are about (1.1 ± 0.6)1023 poise (P) and 104 (1 ± 0.5) yr. The non-tidal secular acceleration of the Earth can also be attributed to the viscoelastic response to deglaciation and results in an independent viscosity estimate of 1.6 × 1023 P with upper and lower limits of 1.1 × 1023 and 2.8 × 1023 P. These values are in agreement with those based on the polar drift analysis and indicate an average mantle viscosity of 1–2 × 1023 P.  相似文献   

2.
Summary. Recent results from the analysis of postglacial rebound data suggest that the viscosity of the Earth's mantle increases through the transition region. Models which fit both relative sea-level and free air gravity data have viscosities which increase from a value near 1022 poise in the upper mantle beneath the lithosphere to a value of about 1023 poise in the lower mantle. In this paper we analyse the effect of deglaciation upon the Earth's rotation and thereby show that the observed secular trend (polar wander) evident in the ILS—IPMS pole path, and measurements of the non-tidal acceleration of the length of day, are both consistent with the viscosity profile deduced from postglacial rebound. The two analyses are therefore mutually reinforcing.  相似文献   

3.
Summary. Estimates of the secular variation in the Red Sea over the period 1959 to 1972 have been obtained from an analysis of marine magnetic data. A total of 318 crossings of ships' tracks were used to determine the mean secular variation for the intervals 1959–72, 1959–65 and 1965–72. The mean secular variation 1959–72 shows a marked northward increase from approximately -10 nT/yr at 13°N to +27 nT/yr at 24°N. North of this, the data suggest a small decrease to + 25 nT/yr at 27° N. These values are consistent with the secular variation recorded at the nearby geomagnetic observatory at Helwan, Egypt, but less than those predicted by the 1965 IGRF for the same period.
Comparison of the mean secular variations for 1959–65 and 1965–72 yields a rough estimate of the secular acceleration of - 1.5 nT yr−2. Analysis of the cross-over information, corrected for the latitude dependence of the secular variation, shows a regular decrease in the secular change over the period 1959–72 at all latitudes of about -1 nTyr−2. This secular acceleration makes a substantial contribution to the overall secular change in the Red Sea and as such must be included in the correction of magnetic data covering more than a few years.  相似文献   

4.
222 Rn and 226Ra distributions beneath the sea ice of the Barents Sea revealed that ice cover has varied effects on air-sea gas exchange. Twice, once in late summer and once in late winter, seawater samples from the top meter below drill holes had 222Rn activities that were not lower than their 226,Ra activities, indicating the existence of secular equilibrium and a negligible net exchange of 222Rn and other gases with the atmosphere. However, seawater in the upper 20-85 m usually exhibited at least some 222Rn depletion; 222Rn-to-226Ra activity ratios tended to have 'ice-free' values (0.3-0.9) in the summer and values between 0.9 and 1.0 in the winter. Integrated 222Rn depletions and piston velocities in both seasons typically fell in the lower 25% of the ranges for ice-free seawater, suggesting that a moderate but far from total reduction in gas exchange is normally caused by ice cover and/or meltwater. The results demonstrate that sea-ice interference with the oceanic uptake of atmospheric gases such as CO, is not well understood and needs further investigation.  相似文献   

5.
A region of enhanced conductivity at the base of the mantle is modelled by an infinitesimally thin sheet of uniform effective conductance adjacent to the core–mantle boundary. Currents induced in this sheet by the temporally varying magnetic field produced by the geodynamo give rise to a discontinuity in the horizontal components of the poloidal magnetic field on crossing the sheet, while the radial component is continuous across the sheet. Treating the rest of the mantle as an insulator, the horizontal components of the poloidal magnetic field and their secular variation at the top of the core are determined from geomagnetic field, secular variation and secular acceleration models. It is seen that for an assumed effective conductance of the sheet of 108  S, which may be not unrealistic, the changes produced in the horizontal components of the poloidal field at the top of the core are usually ≤10 per cent, but corrections to the secular variation in these components at the top of the core are typically 40 per cent, which is greater than the differences that exist between different secular variation models for the same epoch. Given the assumption that all the conductivity of the mantle is concentrated into a thin shell, the present method is not restricted to a weakly conducting mantle. Results obtained are compared with perturbation solutions.  相似文献   

6.
Summary. The thermal effect of a rapid injection of hot magmas into the lower part of the lithosphere is modelled as an increase in heat production through the invaded region. The change in surface heat flow and the uplift resulting from the thermal expansion are determined in three-dimensional axially symmetric geometry: they are expressed as the space time convolutions of a Green's function with the anomalous heat production.
The anomalies with shorter wavelength (compared to the lithospheric thickness) are attenuated. This filtering affects the surface uplift more than the heat flow anomaly; the attenuation effect is larger when only the lower part of the lithosphere is invaded.
The uplift time constant is of the same order as the heat conduction time if the lower lithosphere is invaded by magmas at a moderate rate (i.e. the rate of injection does not exceed the equivalent of 0.1 per cent of the lithospheric volume in 106yr). Fifty per cent of the total uplift takes place in about 80 × 106yr for a lithosphere 100 km thick. The uplift is slightly faster when the whole lithosphere is invaded. The heat flow anomaly is delayed when the lower part of the lithosphere is invaded.
The spatial extent and the timing of the uplift and heat flow anomalies are critical in determining the mechanism's feasibility. Magma injections explain rapid uplifts [> 100 m (106 yr)−1] only if the magma is supplied at a very high rate (i.e. at least 10 per cent of the lithosphere volume per 106yr). It is a feasible mechanism for uplifts that occur over longer periods of time (≊ 30 × 106yr) such as those that seem to have occurred when the African plate came to rest with respect to the mantle.  相似文献   

7.
Summary. We have implemented an algorithm which is based on Bailey's solution of the inverse problem of electromagnetic induction in the Earth. The study was motivated by recent determinations of very long period data and also benefited from recent redeterminations of high frequency data. The algorithm has been successfully tested to provide reliable estimates of conductivity down to a depth of 2000 km, using synthetic data in the period range from 4 days to 11 years. Smooth data sets, which are required for the inversion, were constructed from various sources. At a given depth, the range of inverted models is less than one order of magnitude. Due to the lack of high frequency data, the conductivity of the upper 600 km of the mantle, which is found to be of the order of 10−1Ω−1 m−1, may be overestimated. The algorithm performs well in the middle mantle, where conductivity rises steadily from 1 to 50 Ω−1 m−1. The lack of very low frequency data and limitations of the algorithm prevent one from obtaining meaningful estimates in the lower mantle. However, the study of the propagation of the late 1960s secular variation acceleration provides an estimate of the mean conductivity of the whole mantle. Thus, a complete mantle profile can be constructed. It is found that deep mantle conductivity probability does not exceed a few hundred Ω−1 m−1.  相似文献   

8.
Landforms Ancient and Recent: the Paradox   总被引:1,自引:0,他引:1  
Very old etchforms of Cretaceous age or older (Pangaean surfaces) are preserved in many parts of the world. Some have been exposed to the elements for periods of 108 years and their persistence poses problems per se . Moroever, landforms are actively developing within or immediately adjacent to these palaeosurface remnants. Unconsolidated materials, whether occurring as regolith on palaeosurfaces or as deposits in valleys and basins, are readily eroded, but coherent rocks are resistant, particularly in well drained situations. A model involving unequal erosion and positive feedback provides optimal conditions for survival.  相似文献   

9.
Seismic sources with observable glut moments of spatial degree two   总被引:1,自引:0,他引:1  
Let ζΛ and r Λ. be the hypocentral position and time of an extended indigenous seismic source. Backus showed that the force moment tensors of the source, Γ( m +1, n )Λ, r Λ), determine and are determined by the motion which the source produces. For small m + n , only the long-period motion is relevant. The glut moment tensor Λ( m,n )Λ, r Λ.) can be calculated uniquely from γ( m +1, n )Λ r Λ) only if m = 0 or m = 1. The tensor G =Λ(2,0)Λ) gives the spatial variance tensor WΛ of the source, and WΛ. roughly describes the size, shape and orientation of the source region. Therefore the failure of the observed F =Γ(3,0)Λ) to determine G uniquely is of seismological interest. In the present paper we show that F determines G uniquely if we assume the source to be a simple straight line source (SSLS) or an ideal fault in an isotropic medium with isotropic prestress (IFIMIP). We give tests on F which determine whether it can come from a SSLS, from an IFIMIP or from a simple plane surface source (SPSS). If we assume the source to be a SPSS then knowing F and the fault plane determines G to within an unknown scalar multiple of a certain tensor tangent to the fault plane. Moreover F determines the fault plane uniquely unless F can come from a SSLS. If it can, then F determines this virtual source line uniquely, and F permits the fault plane to be any plane containing the virtual source line.  相似文献   

10.
Summary. A model of the tides in a hemispherical ocean is used to investigate the effect of changes in the Earth's rotation rate on the power dissipated by the ocean tides. The results obtained are then used in an idealized astronomical model to investigate how they affect the history of the Earth—Moon system.
Using the tidal model it is found that at rotation rates higher than that of the present Earth, the power dissipated by the semi-diurnal tides in the ocean drops off rapidly as a result of the increased tidal frequency. Thus if the Earth's rotation rate is doubled from its present value, then the rate of energy dissipation in the ocean is reduced to approximately one-third of its present value and the tidal torque is reduced by a factor of about 6.
The present value for secular acceleration of the Moon, calculated from the results of the tidal model is -30.5 arcsec century-2. Using this value in the astronomical model, which has the Moon and Sun in circular orbits above the equator, and assuming that the tidal torque is independent of the tidal frequency, the Gerstenkorn event is predicted to have occurred 1.3 × 109 yr ago.
When the astronomical model is run with a torque determined at all times from the tidal model, the reduction in the energy dissipated early in the history of the system, leads to a Gerstenkorn date of 5.3 × 109 yr ago. However, dissipation within the solid earth is found to be important early in the history of the system and when this effect is included it gives a date for the Gerstenkorn event of 3.9 × 109 yr ago.  相似文献   

11.
Micromonas pusilla (Butcher) Manton & Parke appears to be a prominent member of the Barents Sea picoplankton community as revealed by the serial dilution culture method. Cell numbers frequently exceeded 107 cells 1−1, though they usually varied between 103and 106 cells l−1. A number of other identified and unidentified taxa were recorded and quantified. Distribution relative to the marginal ice zone is reported.  相似文献   

12.
Summary. A variety of near-regional (300 km) data, including spectral amplitudes of Pg , surface-wave forms, and close-in (5–10 km) accelerograms have been used to build an elastic seismic source model for a 1-Mton explosion in tuff at near-regional distances. The model consists of: (1) a pressure pulse which injects 3 × 1012 cm3 of volume into the medium, (2) a vertical, upward force impulse that imparts 1018 dyn-s of momentum to the medium, each source component having a time duration of 0.6 s and a depth of 1.3 km. The force impulse appears to be required by two considerations: (a) the striking similarity, apart from sign, of explosion surface waves with those of their cavity collapses, (b) the observation of considerable SV energy leaving the source of the 1-Mton explosions JORUM and HANDLEY . Scaling curves have been constructed which fit the proposed source model. These scaling curves employ: very slow decrease, as (yield)−0.10 of the primary corner frequency; decay as (frequency)4 or (frequency)3 to high frequency. While these scaling curves are unconventional, they appear to be the only ones which can satisfy the near-regional data. The slow scaling with yield of the spectral carner frequency suggests that it is caused by something other than the equivalent elastic radius, e.g. the time duration of motion at the source. The results, at odds with similar studies at teleseismic distances, suggest that significantly different equivalent elastic sources are required at near-regional (as compared with teleseismic) distances; therefore, the effect of the upward impulse might not be seen at teleseismic distances. Consequently, these results probably do not pertain to the seismic discrimination problem at teleseismic distances.  相似文献   

13.
Surface velocities in parts of the India–Asia collision zone are compared to velocities calculated from equations describing fluid flow driven by topographically produced pressure gradients. A good agreement is found if the viscosity of the crust is ∼1020 Pa s in southern Tibet and ∼1022 Pa s in the area between the Eastern Syntaxis and the Szechwan Basin. The lower boundary condition of the flow changes between these two areas, with a stress-free lower boundary in the area between the Szechwan basin and the Eastern Syntaxis, and a horizontally rigid but vertically deformable boundary where strong Indian lithospheric material underlies southern Tibet. Deformation maps for olivine, diopside and anorthite show our findings to be consistent with laboratory measurements of the rheology of minerals. Gravitationally driven flow is also suggested to be taking place in the Indo–Burman Ranges, with a viscosity of ∼1019–1020 Pa s. Flow in both southern Tibet and the Indo–Burman Ranges provides an explanation for the formation of the geometry of the Eastern Himalayan Syntaxis. The majority of the normal faulting earthquakes in the Tibetan Plateau occur in the area of southern Tibet which we model as gravitationally spreading over the Indian shield.  相似文献   

14.
Inference of mantle viscosity from GRACE and relative sea level data   总被引:12,自引:0,他引:12  
Gravity Recovery And Climate Experiment (GRACE) satellite observations of secular changes in gravity near Hudson Bay, and geological measurements of relative sea level (RSL) changes over the last 10 000 yr in the same region, are used in a Monte Carlo inversion to infer-mantle viscosity structure. The GRACE secular change in gravity shows a significant positive anomaly over a broad region (>3000 km) near Hudson Bay with a maximum of ∼2.5 μGal yr−1 slightly west of Hudson Bay. The pattern of this anomaly is remarkably consistent with that predicted for postglacial rebound using the ICE-5G deglaciation history, strongly suggesting a postglacial rebound origin for the gravity change. We find that the GRACE and RSL data are insensitive to mantle viscosity below 1800 km depth, a conclusion similar to that from previous studies that used only RSL data. For a mantle with homogeneous viscosity, the GRACE and RSL data require a viscosity between  1.4 × 1021  and  2.3 × 1021  Pa s. An inversion for two mantle viscosity layers separated at a depth of 670 km, shows an ensemble of viscosity structures compatible with the data. While the lowest misfit occurs for upper- and lower-mantle viscosities of  5.3 × 1020  and  2.3 × 1021  Pa s, respectively, a weaker upper mantle may be compensated by a stronger lower mantle, such that there exist other models that also provide a reasonable fit to the data. We find that the GRACE and RSL data used in this study cannot resolve more than two layers in the upper 1800 km of the mantle.  相似文献   

15.
Magnetic susceptibility ( χ ) variations and the behaviour of the ratio of susceptibility to saturation magnetization ( χ/J s ) along the loess/palaeosol section at Koriten (NE Bulgaria) are used to deduce climatic changes during the Pleistocene in southeastern Europe. A good correlation of susceptibility variations with the astronomically tuned oxygen isotope record from ODP site 677 enables us to propose a more precise dating of the upper part of the Bulgarian loess complex. Close correspondence between susceptibility and δ 1 8 O records demonstrates the global significance of the palaeoclimatic signal recorded, although differences in relative amplitudes of χ and χ/J s and δ 1 8 O create difficulties in making quantitative estimates of the climatic humidity in the past. The role of local factors affecting the palaeoclimatic mineral magnetic record deduced from the profile studied in Bulgaria is discussed.  相似文献   

16.
Summary. It is shown that the interval estimate for K given by Cox (1969) is inappropriate as a test for determining whether secular variation has been averaged out in a particular study. The appropriate test is presented in two formulations, one for use with χ2 tables and the other for use with F tables.
The well known secular variation models are investigated and it is shown that Model A due to Irving & Ward (1964) is, statistically, the most efficient predictor. Finally, for the 83 palaeomagnetic results selected by Brock (1971), it is shown that the most efficient predictor for the secular variation K is k '= 18.1 (1 + 3 sin2λ), where λ is the palaeolatitude, and the uncertainty in this predicted value is discussed.  相似文献   

17.
13 lava flows of known age (ages from 14C dating), which have been erupted in the last 30 000 years, have been studied to determine the palaeosecular variation of the geomagnetic field in Central Mexico. Samples were taken from two different monogenetic volcanic fields: the Michoacan-Guanajuato volcanic field (six sites) and the Chichinautzin Formation (seven sites), both part of the Transmexican Volcanic Belt. The lavas were studied in detail using rock magnetic methods (magnetic susceptibility at room temperature, low-temperature susceptibility behaviour, hysteresis loops, Curie temperatures), combined with reflected light microscopy, in order to deduce their magnetic mineralogy and the domain states of the magnetic minerals. The magnetic carriers are titanomagnetites, which show differing degrees of high-temperature deuteric oxidation, and seem to be predominantly pseudo-single domain (PSD), though in many cases are probably a mixture of domain states. Mean palaeomagnetic directions and palaeointensity values using Shaw and Thellier techniques were obtained using several specimens from each flow. Our data seem to indicate a sharp easterly swing in declination about 5000 years ago, which is also observed in lake sediments from Central Mexico. The calculated values of the virtual dipole moment (VDM) range from 3.1 to 14.9 × 1022 A m2. Our data indicate that the virtual dipole moment seems to have increased gradually in magnitude over the last 30 kyr, with a peak at about 9000 years BP. These are features that have been observed in other parts of the globe and are probably caused by variations in the dipole part of the geomagnetic field.  相似文献   

18.
Summary. Seismic travel times for extrema, zero-crossings, or entire body waves need to be determined precisely to one part in 103 or better in several varieties of seismic studies employing an impulsive artificial source. Examples are crosshole surveys which delineate rock crack distribution separating the holes and monitoring of crustal seismic travel times in earthquake precursor studies. A timing resolution of one part in 103 has been achieved previously using digitally recorded seismic data. These methods, however, do not use interpolation between digitized data points as a method to increase the timing resolution. We report travel-time determinations based on interpolation between digitized points which achieve a precision of two parts in 104, a five-fold improvement over the existing methods. In addition, the effects of seismic noise on travel-time measurement have been compared for the extremum location, the unnormalized correlation, and the normalized correlation method. The following conclusions are drawn from this comparison: (1) the normalized correlation method provides an 18–55 per cent improvement in the standard deviation of the mean over the extremum location method, and (2) results as accurate as those by the normalized correlation can be obtained by the unnormalized correlation if a complete up-and-down swing of the waveform is used as the master trace and if the master trace is close to being sinusoidal. The advantage of the unnormalized correlation over the normalized correlation is speed; the unnormalized correlation is faster by a factor of 28 in computing time.  相似文献   

19.
The highest intermediate depth moment release rates in Indonesia occur in the slab beneath the largely submerged segment of the Banda arc in the Banda Sea to the east of Roma, termed the Damar Zone. The most active, western-part of this zone is characterized by downdip extension, with moment release rates (∼1018 Nm yr–1 per 50 km strike length) implying the slab is stretching at ∼10−14 s−1 consistent with near complete slab decoupling across the 100–200 km depth range. Differential vertical stretching along the length of the Damar Zone is consistent with a slab rupture front at ∼100–200 km depth beneath Roma propagating eastwards at ∼100 km Myr–1. Complexities in the slab deformation field are revealed by a narrow zone of anomalous in-plane P -axis trends beneath Damar, where subhorizontal constriction suggests extreme stress concentrations ∼100 km ahead of the slab rupture front. Such stress concentrations may explain the anomalously deep ocean gateways in this region, in which case ongoing slab rupture may have played a key role in modulating the Indonesian throughflow in the Banda Sea over the last few million years.  相似文献   

20.
Summary . The great Etorofu earthquake of 1958 November 6 is characterized by a relatively small aftershock area (70 × 150 km2) and an extremely large felt area. The felt area is more extensive than those of any other large earthquakes which have occurred in the southern Kurile to northern Japan arc since the beginning of this century. The mechanism is a pure thrust fault typical of most great earthquakes in island arcs. A body wave magnitude of m b = 8.2 is obtained at periods around 6 s using more than 40 observations, although an m b value of only 7.6–7.7 would be expected empirically from the observed surface wave magnitude of M s= 8.1–8.2. Both an unusually large felt area and a high m b indicate a dominance of high-frequency components in the seismic waves. A seismic moment of M o= 4.4 × 1028 dyne cm is determined from long-period surface waves from which a high stress drop of Δσ = 78 bar is obtained using a relatively small aftershock area. Historic data indicate an anomalously long time interval between the 1958 event and any earlier great earthquake from the same source region. The observed high stress drop can be interpreted as a consequence of this long intervening period through which strain built up. The dominance of the high-frequency seismic waves can then be interpreted as a result of this high stress drop. Stress drops, seismic wave spectra and recurrence intervals of great earthquakes are in this way closely related to each other. The 1958 event may represent a high strength extreme of stochastic fluctuation of fracture strength relevant to great earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号