首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We consider stars with radial velocities, proper motions, and distance estimates from the RAVE4 catalogue. Based on a sample of more than 145 000 stars at distances r < 0.5 kpc, we have found the following kinematic parameters: \({\left( {U,{\kern 1pt} V,{\kern 1pt} W} \right)_ \odot }\) = (9.12, 20.80, 7.66) ± (0.10, 0.10, 0.08) km s?1, Ω0 = 28.71 ± 0.63 km s?1 kpc?1, and Ω0 = ?4.28 ± 0.11 km s?1 kpc?2. This gives the linear rotation velocity V 0 = 230 ± 12 km s?1 (for the adopted R 0 = 8.0 ± 0.4 kpc) and the Oort constants A = 17.12 ± 0.45 km s?1 kpc?1 and B = ?11.60 ± 0.77 km s?1 kpc?1. The 2D velocity distributions in the UV, UW, and VW planes have been constructed using a local sample, r < 0.25 kpc, consisting of ~47 000 stars. A difference of the UV velocity distribution from the previously known ones constructed from a smaller amount of data has been revealed. It lies in the fact that our distribution has an extremely enhanced branch near the Wolf 630 peak. A previously unknown peak at (U, V) = (?96, ?10) km s?1 and a separate new feature in the Wolf 630 stream, with the coordinates of its center being (U, V) = (30, ?40) km s?1, have been detected.  相似文献   

4.
We measured the radial velocity of the star θ1 Ori D from IUE spectra and used published observations. Based on these data, we determined the period of its radial-velocity variations, P=20.2675±0.0010 days, constructed the phase radial-velocity curve, and solved it by least squares. The spectroscopic orbital elements were found to be the following: the epoch of periastron passage Ep=JD 2430826.6±0.1, the system's center-of-mass velocity /Gg=32.4±1.0 km s?1, K=14.3±1.5 km s?1, Ω=3.3±0.1 rad, e=0.68±0.09, a1 sin i = 3 × 1010 km, and f1 = 0.0025M. Twice the period, P=40.528±0.002 days, is also consistent with the observations.  相似文献   

5.
We present the results of our study of the poorly known B[e] star AS 160=IRAS 07370-2438. The high-resolution spectrum obtained with the 6-m BTA telescope exhibits strong emission in the Hα line with a two-component profile, indicating that the gaseous envelope of the star is nonspherical. Previously nonanalyzed photometric data suggest the presence of a compact dust envelope. The fundamental parameters of the star (log L/L = 4.4 ± 0.2, v sin i = 200 km s?1 and its distance (3.5±0.5 kpc) have been determined for the first time and are in agreement with published estimates of the MK spectral type of the object (B1.5 V:). Analysis of the object's properties leads us to suggest that this is a binary system that belongs to our recently identified type of Be stars with warm dust.  相似文献   

6.
We have studied the simultaneous and separate solutions of the basic kinematic equations obtained using the stellar velocities calculated on the basis of data from the Gaia TGAS and RAVE5 catalogues. By comparing the values of Ω'0 found by separately analyzing only the line-of-sight velocities of stars and only their proper motions, we have determined the distance scale correction factor p to be close to unity, 0.97 ± 0.04. Based on the proper motions of stars from the Gaia TGAS catalogue with relative trigonometric parallax errors less than 10% (they are at a mean distance of 226 pc), we have found the components of the group velocity vector for the sample stars relative to the Sun (U, V,W) = (9.28, 20.35, 7.36) ± (0.05, 0.07, 0.05) km s?1, the angular velocity of Galactic rotation Ω0 = 27.24 ± 0.30 km s?1 kpc?1, and its first derivative Ω'0 = ?3.77 ± 0.06 km s?1 kpc?2; here, the circular rotation velocity of the Sun around the Galactic center is V0 = 218 ± 6 km s?1 kpc (for the adopted distance R0 = 8.0 ± 0.2 kpc), while the Oort constants are A = 15.07 ± 0.25 km s?1 kpc?1 and B = ?12.17 ± 0.39 km s?1 kpc?1, p = 0.98 ± 0.08. The kinematics of Gaia TGAS stars with parallax errors more than 10% has been studied by invoking the distances from a paper by Astraatmadja and Bailer-Jones that were corrected for the Lutz–Kelker bias. We show that the second derivative of the angular velocity of Galactic rotation Ω'0 = 0.864 ± 0.021 km s?1 kpc?3 is well determined from stars at a mean distance of 537 pc. On the whole, we have found that the distances of stars from the Gaia TGAS catalogue calculated using their trigonometric parallaxes do not require any additional correction factor.  相似文献   

7.
A sample of classical Cepheids with known distances and line-of-sight velocities has been supplemented with proper motions from the Gaia DR1 catalogue. Based on the velocities of 260 stars, we have found the components of the peculiar solar velocity vector (U, V, W) = (7.90, 11.73, 7.39) ± (0.65, 0.77, 0.62) km s?1 and the following parameters of the Galactic rotation curve: Ω0 = 28.84 ± 0.33 km s?1 kpc?1, Ω′0 = ?4.05 ± 0.10 km s?1 kpc?2, and Ω″0 = 0.805 ± 0.067 km s?1 kpc?3 for the adopted solar Galactocentric distance R 0 = 8 kpc; the linear rotation velocity of the local standard of rest is V 0 = 231 ± 6 km s?1.  相似文献   

8.
We present the results of our photometric (BV R) and spectroscopic CCD observations of NGC 304 and NGC 7625, candidate polar-ring galaxies, performed with the 6-m Special Astrophysical Observatory telescope. For NGC 304, such a study has been carried out for the first time. We have obtained basic integrated characteristics of the galaxies and determined their morphological types (S0 for NGC 304 and Sa for NGC 7625). The absolute magnitudes of the galaxies, M B = ?20m.81 for NGC 304 and M B = ?19m.34 for NGC7625, are indicative of their fairly high luminosities. The disk and bulge parameters have been determined forNGC 304 (µ0 = 20m.60, h = 3.86 kpc, µ e = 21m.59, r e = 1.26 kpc in the B band); these correspond to the parameters of S0-type objects. The rotation velocity for NGC 304 (200 km s?1) reaches its maximum at a galactocentric distance of 3.1 kpc, which yields a mass estimate for the galaxy of 2.8 × 1010 \(\mathcal{M}_ \odot \). The observed photometric features at the center of NGC 304 indicate that it may have an inner ring structure, although we have failed to confirm the existence of two kinematic systems based on our spectroscopic observations. In NGC 7625, the disk makes a dominant contribution to the total brightness. The derived integrated color indices (B-V = 0m.81 and V-R = 0m.61) agree with previous determinations of other authors. We have estimated the учештсешщт in the inner galactic regions. In the outer regions, we have detected structures with bluer colors (B-V = 0m.60), which may be indicative of a polar ring with a minor stellar component.  相似文献   

9.
We consider two samples of OB stars with different distance scales that we have studied previously. The first and second samples consist of massive spectroscopic binaries with photometric distances and distances determined from interstellar calcium lines, respectively. The OB stars are located at heliocentric distances up to 7 kpc. We have identified them with the Gaia DR1 catalogue. Using the proper motions taken from the Gaia DR1 catalogue is shown to reduce the random errors in the Galactic rotation parameters compared to the previously known results. By analyzing the proper motions and parallaxes of 208 OB stars from the Gaia DR1 catalogue with a relative parallax error of less than 200%, we have found the following kinematic parameters: (U, V) = (8.67, 6.63)± (0.88, 0.98) km s?1, Ω0 = 27.35 ± 0.77 km s?1 kpc?1, Ω′0 = ?4.13 ± 0.13 km s?1 kpc?2, and Ω″0 = 0.672 ± 0.070 km s?1 kpc?3, the Oort constants are A = ?16.53 ± 0.52 km s?1 kpc?1 and B = 10.82 ± 0.93 km s?1 kpc?1, and the linear circular rotation velocity of the local standard of rest around the Galactic rotation axis is V 0 = 219 ± 8 km s?1 for the adopted R 0 = 8.0 ± 0.2 kpc. Based on the same stars, we have derived the rotation parameters only from their line-of-sight velocities. By comparing the estimated values of Ω′0, we have found the distance scale factor for the Gaia DR1 catalogue to be close to unity: 0.96. Based on 238 OB stars of the combined sample with photometric distances for the stars of the first sample and distances in the calcium distance scale for the stars of the second sample, line-of-sight velocities, and proper motions from the Gaia DR1 catalogue, we have found the following kinematic parameters: (U, V, W) = (8.19, 9.28, 8.79)± (0.74, 0.92, 0.74) km s?1, Ω0 = 31.53 ± 0.54 km s?1 kpc?1, Ω′0 = ?4.44 ± 0.12 km s?1 kpc?2, and Ω″0 = 0.706 ± 0.100 km s?1 kpc?3; here, A = ?17.77 ± 0.46 km s?1 kpc?1, B = 13.76 ± 0.71 km s?1 kpc?1, and V 0 = 252 ± 8 km s?1.  相似文献   

10.
We have selected and analyzed a sample of OB stars with known line-of-sight velocities determined through ground-based observations and with trigonometric parallaxes and propermotions from the Gaia DR2 catalogue. Some of the stars in our sample have distance estimates made from calcium lines. A direct comparison with the trigonometric distance scale has shown that the calcium distance scale should be reduced by 13%. The following parameters of the Galactic rotation curve have been determined from 495 OB stars with relative parallax errors less than 30%: (U, V,W) = (8.16, 11.19, 8.55)± (0.48, 0.56, 0.48) km s?1, Ω0 = 28.92 ± 0.39 km s?1 kpc?1, Ω'0 = ?4.087 ± 0.083 km s?1 kpc?2, and Ω″ 0 = 0.703 ± 0.067 km s?1 kpc?3, where the circular velocity of the local standard of rest is V0 = 231 ± 5 km s?1 (for the adopted R0 = 8.0 ± 0.15 kpc). The parameters of the Galactic spiral density wave have been found from the series of radial, VR, residual tangential, ΔVcirc, and vertical, W, velocities of OB stars by applying a periodogram analysis. The amplitudes of the radial, tangential, and vertical velocity perturbations are fR = 7.1± 0.3 km s?1, fθ = 6.5 ± 0.4 km s?1, and fW = 4.8± 0.8 km s?1, respectively; the perturbation wavelengths are λR = 3.3 ± 0.1 kpc, λθ = 2.3 ± 0.2 kpc, and λW = 2.6 ± 0.5 kpc; and the Sun’s radial phase in the spiral density wave is (χ)R = ?135? ± 5?, (χ)θ = ?123? ± 8?, and (χ)W = ?132? ± 21? for the adopted four-armed spiral pattern.  相似文献   

11.
Detailed studies of the internal motions of dark clouds using spectral lines of many molecules require a laboratory frequency accuracy of the order of a few m s?1. Based on our laboratory studies of the HNCO rotational spectrum in the ground vibrational state, we have increased significantly the accuracy of frequency calculation in a wide range of quantum numbers. We have achieved an (1σ) uncertainty for rotational transitions in the K a = 0, 1 states recalculated to the Doppler velocity scale ≤2 m s?1 for all frequencies <1.1 THz. This value allows radio-astronomical measurements with an accuracy comparable to that of the highest-precision observations based on spectral lines of other molecules.  相似文献   

12.
Open star clusters from the MWSC (Milky Way Star Clusters) catalogue have been used to determine the Galactic rotation parameters. The circular rotation velocity of the solar neighborhood around the Galactic center has been found from data on more than 2000 clusters of various ages to be V 0 = 236 ± 6 km s?1 for the adopted Galactocentric distance of the Sun R 0 = 8.3 ± 0.2 kpc. The derived angular velocity parameters are Ω 0 = 28.48 ± 0.36 km s?1 kpc?1, Ω0 = ?3.50 ± 0.08 km s?1 kpc?2, and Ω0 = 0.331 ± 0.037 km s?1 kpc?3. The influence of the spiral density wave has been detected only in the sample of clusters younger than 50 Myr. For these clusters the amplitudes of the tangential and radial velocity perturbations are f θ = 5.6 ± 1.6 km s?1 and f R = 7.7 ± 1.4 km s?1, respectively; the perturbation wavelengths are λ θ = 2.6 ± 0.5 kpc (i θ = ?11? ± 2?) and λ R = 2.1 ± 0.5 kpc (i R = ?9? ± 2?) for the adopted four-armed model (m = 4). The Sun’s phase in the spiral density wave is (χ)θ = ?62? ± 9? and (χ)R = ?85? ± 10? from the residual tangential and radial velocities, respectively.  相似文献   

13.
We present the results of our study of the emission from the transient burster MX 0836-42 using its observations by the INTEGRAL and RXTE X-ray and gamma-ray observatories in the period 2003–2004. The source’s broadband X-ray spectrum in the energy range 3–120 keV has been obtained and investigated for the first time. We have detected 39 X-ray bursts from this source. Their analysis shows that the maximum 3–20-keV flux varies significantly from burst to burst, F ~ (0.5–1.5) × 10?8 erg cm?2 s?1. Using the flux at the maximum of the brightest detected burst, we determined an upper limit for the distance to the source, D ? 8 kpc.  相似文献   

14.
Based on the stellar proper motions of the TGAS (Gaia DR1) catalogue, we have analyzed the velocity field of main-sequence stars and red giants from the TGAS catalogue with heliocentric distances up to 1.5 kpc. We have obtained four variants of kinematic parameters corresponding to different methods of calculating the distances from the parallaxes of stars measured with large relative errors. We have established that within the Ogorodnikov–Milne model changing the variant of distances affects significantly only the solar velocity components relative to the chosen centroid of stars, provided that the solution is obtained in narrow ranges of distances (0.1 kpc). The estimates of all the remaining kinematic parameters change little. This allows the Oort coefficients and related Galactic rotation parameters as well as all the remaining Ogorodnikov–Milne model parameters (except for the solar terms) to be reliably estimated irrespective of the parallax measurement accuracy. The main results obtained from main-sequence stars in the range of distances from 0.1 to 1.5 kpc are: A = 16.29 ± 0.06 km s?1 kpc?1, B = ?11.90 ± 0.05 km s?1 kpc?1, C = ?2.99 ± 0.06 km s?1 kpc?1, K = ?4.04 ± 0.16 km s?1 kpc?1, and the Galactic rotation period P = 217.41 ± 0.60 Myr. The analogous results obtained from red giants in the range from 0.2 to 1.6 kpc are: the Oort constants A = 13.32 ± 0.09 km s?1 kpc?1, B = ?12.71 ± 0.06 km s?1 kpc?1, C = ?2.04 ± 0.08 km s?1 kpc?1, K = ?2.72 ± 0.19 km s?1 kpc?1, and the Galactic rotation period P = 236.03 ± 0.98 Myr. The Galactic rotation velocity gradient along the radius vector (the slope of the Galactic rotation curve) is ?4.32 ± 0.08 km s?1 kpc?1 for main-sequence stars and ?0.61 ± 0.11 km s?1 kpc?1 for red giants. This suggests that the Galactic rotation velocity determined from main-sequence stars decreases with increasing distance from the Galactic center faster than it does for red giants.  相似文献   

15.
We perform a kinematic analysis of the Hipparcos and TRC proper motions of stars by using a linear Ogorodnikov-Milne model. All of the distant (r>0.2 kpc) stars of the Hipparcos catalog have been found to rotate around the Galactic y axis with an angular velocity of M 13 ? =?0.36±0.09 mas yr?1. One of the causes of this rotation may be an uncertainty in the lunisolar precession constant adopted when constructing the ICRS. In this case, the correction to the IAU (1976) lunisolar precession constant in longitude is shown to be Δp1=?3.26±0.10 mas yr?1. Based on the TRC catalog, we have determined the mean Oort constants: A=14.9±1.0 and B=?10.8±0.3 km s?1 kpc?1. The component of the model that describes the rotation of all TRC stars around the Galactic y axis is nonzero for all magnitudes, M 13 ? =?0.86±0.11 mas yr?1.  相似文献   

16.
We analyze the space velocities of blue supergiants, long-period Cepheids, and young open star clusters (OSCs), as well as the H I and H II radial-velocity fields by the maximum-likelihood method. The distance scales of the objects are matched both by comparing the first derivatives of the angular velocity Ω′ determined separately from radial velocities and proper motions and by the statistical-parallax method. The former method yields a short distance scale (for R0=7.5 kpc, the assumed distances should be increased by 4%), whereas the latter method yields a long distance scale (for R0=8.5 kpc, the assumed distances should be increased by 16%). We cannot choose between these two methods. Similarly, the distance scale of blue supergiants should be shortened by 9% and lengthened by 3%, respectively. The H II distance scale is matched with the distance scale of Cepheids and OSCs by comparing the derivatives Ω′ determined for H II from radial velocities and for Cepheids and OSCs from space velocities. As a result, the distances to H II regions should be increased by 5% in the short distance scale. We constructed the Galactic rotation curve in the Galactocentric distance range 2–14 kpc from the radial velocities of all objects with allowance for the difference between the residual-velocity distributions. The axial ratio of the Cepheid+OSC velocity ellipsoid is well described by the Lindblad relation, while σu≈σv for gas. The following rotation-curve parameters were obtained: Ω0=(27.5±1.4) km s?1 kpc?1 and A=(17.1±0.5) km s?1 kpc?1 for the short distance scale (R0=7.5 kpc); and Ω0=(26.6±1.4) km s?1 kpc?1 and A=(15.4±0.5) km s?1 kpc?1 for the long distance scale (R0=8.5 kpc). We propose a new method for determining the angular velocity Ω0 from stellar radial velocities alone by using the Lindblad relation. Good agreement between the inferred Ω0 and our calculations based on space velocities suggests that the Lindblad relation holds throughout the entire sample volume. Our analysis of the heliocentric velocities for samples of young objects reveals noticeable streaming motions (with a velocity lag of ~7 km s?1 relative to the LSR), whereas a direct computation of the perturbation amplitudes in terms of the linear density-wave theory yields a small amplitude for the tangential perturbations.  相似文献   

17.
We have measured the interstellar extinction in the region of ultradeep Galactic-field observations by the Chandra telescope (l II, b II) ≈ 0.1–1.42 using photometric data from the 2MASS infrared allsky survey. The angular resolution of our interstellar extinction map is 1′.8. We show that the interstellar extinction has a minimum, A V ~ 3.4, near the center of the Chandra field of view and increases to A V ~ 5.8–6 at the edge of the field of view. In addition, we show that the bulk of the extinction is gained in the Galactic disk and is approximately the same for all bulge stars. Our results will be subsequently used to process the Chandra data and to estimate the properties of the stellar population in this region.  相似文献   

18.
We systematically investigate the evolution of low-mass (0.35, 0.40, and 0.65M ) helium donors in semidetached binaries with white-dwarf accretors. The initial periods of the binaries are chosen in such a way that the helium abundance in the center of the models at the time of Roche lobe overflow varies between Y c = 0.98 and Y c ? 0.1. The results of our calculations can be used to analyze the formation scenarios and evolutionary status of AM CVn stars. We show that the minimum orbital periods of the semidetached binaries depend weakly on the total mass of the components and the evolutionary phase of the donor at the time of Roche lobe overflow and are 9–10 min. The differences in the mass transfer rates after P orb reaches its minimum in the range P orb ≈ 10–40 min do not exceed a factor of ~2.5. For P orb ? 20 min, the mass-losing stars are weakly degenerate homogeneous cooling objects; the He, C, N, O, and Ne abundances depend on the evolutionary phase at which Roche lobe overflow occurred. For the binaries that are currently believed to be the most probable candidates for AM CVn stars with helium donors, Y ? 0.4, X C ? 0.3, X O ? 0.25, and X N ? 0.5 × 10?2. In the binaries under consideration, once P orb ≈ 40 min has been reached, the mass loss time scale begins to exceed the thermal time scale of the donors, the latter begin to contract, their matter becomes degenerate, and the populations of AMCVn stars with white-dwarf and helium-star progenitors of their donors probably merge together.  相似文献   

19.
The evolution of a rotating star with a mass of 16M at the hydrogen burning phase is considered together with the hydrodynamic processes of angular momentum transport in its interior. Shear turbulence is shown to limit the amplitude of the latitudinal variations in mean molecular weight on a surface of constant pressure in a layer with variable chemical composition. The resulting nonuniformity in the mean molecular weight distribution and the turbulent energy transport along the surface of constant pressure reduce the absolute value of the meridional circulation velocity. Nevertheless, meridional circulation remains the main mechanism of angular momentum transport in the radial direction in a layer with variable chemical composition. The intensity of the processes of angular momentum transport by meridional circulation and shear turbulence is determined by the angular momentum of the star. At a fairly high angular momentum, more specifically, at J = 3.69 × 1052 g cm2 s?1, the star during the second half of the hydrogen-burning phase in its convective core has characteristics typical of classical early Be stars.  相似文献   

20.
We analyzed the chemical composition of the chemically peculiar (CP) star HD 0221=43 Cas using spectra taken with the NES spectrograph of the 6-m telescope with a spectral resolution of 45 000. The Hβ line profile corresponds most closely to Teff = 11 900 K and log g = 3.9. The rotational velocity is ve sin i = 27 ± 2 km s?1, and the microturbulence is ξt = 1 km s?1. The results of our abundance determination by the method of synthetic spectra show that the star has chemical anomalies typical of SrCrEu stars, although its effective magnetic field is weak, Be < 100 G. For silicon, we obtained an abundance distribution in atmospheric depth with a sharp jump of 1.5 dex at an optical depth of log τ5000 = ?0.3 and with silicon concentration in deep atmospheric layers. Similar distributions were found in the atmospheres of cooler stars with strong and weak magnetic fields. A comparison of the chemical peculiarities in HD 10221 with known CP stars with magnetic fields of various strengths leads us to conclude that a low rotational velocity rather than amagnetic field is the determining factor in the formation mechanism of chemical anomalies in the atmospheres of CP stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号