首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于强震动记录确定的场地卓越周期   总被引:1,自引:0,他引:1  
本文介绍了3种根据场地强震动记录获取场地卓越周期的方法: ① 地表记录的傅里叶谱分析法; ② 地表水平/垂直傅里叶谱比法; ③ 地表/地下傅里叶谱比法. 基于日本强震动观测台网KiK-net中两个基岩台站和两个Ⅲ类场地台站获取的数百条强震动记录, 分别使用上述3种方法确定场地的卓越周期, 并对比分析各种方法的优缺点及其适用情况. 结果表明: 对于基岩场地, 由于记录信息复杂, 局部场地条件对地震动影响较小, 地震动自身特性突出, 导致3种方法所得到的结果均比较分散; 对于土层场地, 场地条件影响比较显著, 3种方法基本都可以得到一个较为准确的数值; 但对于某些场地, 地表水平/垂直傅里叶谱比法所得结果存在不确定性, 相比之下, 地表/地下傅里叶谱比法则能给出一个更为准确的场地卓越周期值.   相似文献   

2.
Seismic site amplification studies are generally used to assess the effects of local geology and soil conditions on ground motion characteristics. Although extensive reviews on site amplification phenomena associated with stratigraphic effects can be found in the specialized literature, it should be pointed out that most of the practical applications have been limited to the study of vertically propagating shear horizontal (SH) waves, i.e., to the 1-D soil amplification problem. Furthermore, little attention, if any, has been devoted to the study of the effects of non-vertically incident SH waves on surface accelerograms and on the earthquake response of structures. In the present work, the study is extended to an investigation of 2-D site amplification of non-vertically propagating seismic shear waves in multilayered viscoelastic soil deposits. Sensitivity analyses of the effects of non-vertical incidence on site amplification functions are performed based on site geotechnical data collected from post-seismic investigations of the 1980 El-Asnam earthquake. Analytical results are discussed in terms of seismic site transfer functions, spectral ratios, surface acceleration time histories, and structural response spectra for different values of wave incidence angle. Both bedrock and rock outcropping cases are examined.  相似文献   

3.
Attenuations of the vertical and horizontal response spectra of the 17 October 1989 Loma Prieta, California, earthquake are developed through analyses of the ground motion at 53 sites within a 100 km radius of the source. The analyses are performed on the spectral ordinates for 16 incremental periods ranging from 0.05 to 2.0 sec. The response spectra are modelled empirically for two different site conditions characterized by rock and stiff-soil geologies. Data analysis is performed by the application of a non-linear multivariate regression procedure allowing for distance and site factor as independent variables. Variation of the vertical-to-horizontal (V/H) spectral ratios with wave frequency and distance shows the same behaviour as observed previously in the widely separated geographic regions of northeastern Taiwan and east-central Iran. The predicted ratios at sites underlain by stiff soil are generally higher than the commonly used value of 2/3 at high frequencies ( > 5 Hz) in the near-source region (R < 30 km), but reduce to 1/2 or less at longer periods and farther distances. This behaviour is also observed at rock sites; however, it is somewhat less pronounced. With a faster attenuation of spectral ordinates at higher frequencies, the shape of the response spectrum is found to change with distance. As expected, the spectral attenuation with distance is generally higher for the vertical spectrum than for the horizontal spectrum. The difference is particularly significant at the higher-frequency end of spectrum. Site amplification factors for stiff soil with respect to rock geology varies between 1.17 and 1.72 for horizontal spectrum and 1.01 and 1.81 for vertical spectrum. Spectral amplifications at four sites underlain by soft soil and artificial fill, are also evaluated. This is done by a comparison of the observed spectra with those predicted for rock geology at corresponding distances. As expected, the resulting amplification factors at soft-soil sites show significant increase relative to those at sites underlain by rock.  相似文献   

4.
The authors apply soil response estimation techniques employing accelerograms for fifteen earthquakes recorded at the Yokohama Strong Motion Network and its vertical array of nine sites, plus microtremor data recorded at all 150 sites. Assessment of the reliability of surface to reference site spectral ratios, and horizontal to vertical spectral ratios of S‐waves, coda, and microtremors, relied on cross‐validation with both surface to borehole spectral ratios, and theoretical soil response functions for vertically incident SH plane waves calculated from the vertical array recordings and logging data, respectively. The results indicate the following: (1) the reference site method provides more accurate soil response estimations; (2) the H/V of microtremors provides relatively better soil response estimations than its S‐wave and coda counterparts; and (3) the H/V of microtremors provides coincident soil response estimations at two‐thirds of the sites when considering no more than ±30% mismatch in the determination of the predominant periods. The matching of parameters obtained from the analysis of microtremors, combined with their relatively low economic cost and the possibility of recording without strict spatial or time restrictions turns microtremors into a particularly appealing approach. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The Algiers–Boumerdes regions were hit by an M w 6.8 destructive earthquake on May 21, 2003. The accelerometric and seismometric networks successfully recorded the main shock and many aftershocks at some locations where the damage was most extensive. A microtremor measurement was performed in the same locations; some of them are localized on the Mitidja basin. In this paper, we propose to analyze earthquake-induced site effect derived from horizontal to vertical spectral ratio from ambient noise (noise horizontal to vertical—NHV), or from very weak, weak, moderate and strong ( peak ground acceleration—PGA >10 % g) seismic motions (EHV), and transfer function evaluation from soil velocity profile data at four sites. H/V spectral ratios are computed by using both Fourier and response spectra. Compared to the transfer function, the obtained results show that in the case of soft soils, NHV as well as EHV give a good estimation of the soil's fundamental frequency, whereas the NHV underestimate the H/V amplitude and the EHV amplitude increase with the seismic motion intensity. In the case of firm soils, whereas the NHV gives flat curves synonymous for a rock site or a bump, the EHV is more appropriate as seen by identifying clear peaks with non negligible amplitude. In the case of soft sites as well as in the case of firm sites, strong peaks at frequencies higher than the fundamental one are found from EHV curves. Those peaks would not be found when looking at NHV ratios alone, are evidenced by the computed transfer function as well as by an analytical formulation, and are in agreement with the observed distribution of damage during the M w 6.8 2003 Boumerdes earthquake. Finally, the same analysis is performed by using response spectra rather than Fourier spectra and leads to the same conclusions. Moreover, the calculation of the response spectra is more easily compared with the smoothing operation of the Fourier spectra.  相似文献   

6.
We investigate a special type of variability in response spectral amplification ratios computed from numerical “engineering” models for a soft soil site. The engineering models are defined by shallow soil layers over “engineering” bedrock with a shear-wave velocity over 600–700 m/s and the model is subjected to vertical propagating shear waves. The variability, perhaps unique in earthquake engineering, is a result of the “perfectly accurate” computational procedure. For example, an engineering soil site model, subjected to two rock site records or the two horizontal components of a rock site record, produces different response spectral amplification ratios. We use a large number of strong-motion records from “engineering” rock sites, with a reasonably balanced distribution with respect to magnitude and source distance, generated by subduction earthquakes in Japan, to investigate the nature of the variability. In order to avoid any approximation in removing the effect of soil nonlinear response, we use a simple model, a single horizontal soil layer over a bedrock, modelled as elastic. We then demonstrate that a similar type of variability observed in the one- or two-dimensional nonlinear soil models is caused by the nature of response spectral amplification ratios, not a direct result of soil nonlinear response. Examination of variability reveals that the average of response spectral amplification ratios systematically depends on both earthquake magnitude and source distance. We find that, at periods much longer than the site natural periods of the soil sites, the scatter of the amplification ratios decreases with increasing magnitude and source distance. These findings may have a potential impact in establishing design spectra for soft soil sites using strong-motion attenuation models or dynamic numerical modelling.  相似文献   

7.
分析了跨断层形变监测标石地岩土分类、地表岩土分类、影响监测场地标石稳定因素以及不同监测标石地监测实例变化等。结果表明:现有监测标石地岩土分类需要完善;重新分类了监测标石地岩土并给出了监测标石命名方法,以期促进跨断层形变监测工作进一步发展。  相似文献   

8.
This paper presents a study of site effects in the urban area of Tecoman in Colima, Mexico. A variety of instruments (both accelerometers and seismometers) were used to record earthquakes and ambient vibration throughout the city. Earthquake records were analysed using several techniques to estimate site effects: spectral ratios relative to a reference station, spectral ratios of the horizontal components relative to the vertical recorded at the same site, and a parametric inversion of Fourier spectra. Ambient noise records were used to estimate a local transfer function using horizontal to vertical spectral ratios. The results show that local amplification at Tecoman is significant. Dominant frequency varies between 0.5 and 0.7 Hz, suggesting a large thickness of the soft sedimentary deposits. We did not observe systematic variations throughout the city. Our more reliable estimates indicate that maximum amplification is comprised between a factor 6 and 8. Comparisons among different sensors and recorders show that all combinations between velocimeters, accelerometers, and recorders provide reliable results provided that the electronic noise is smaller than the noise being recorded. This is notably not the case for accelerometers at quiet sites and for frequencies smaller than 2 Hz. This explains why previous studies disagree as to the usefulness of accelerometers to record ambient noise for site effect studies. This factor is, however, a function of noise amplitude at each site.  相似文献   

9.
Field observations on ground motions from recent earthquakes imply that current knowledge is limited with regard to relating vertical and horizontal motions at liquefiable sites. This paper describes a study with the purpose of clarifying this emerging issue to some extent. A series of numerical analyses is carried out on a liquefiable soil deposit with a verified, fully coupled, nonlinear procedure. It is shown that the transformation of vertical motions in the deposit differs considerably from the transformation of horizontal motions. Both the amplitude and frequency content of the horizontal motions are strongly dependent on the shaking level or the associated nonlinear soil behavior. The transfer function for vertical motions is however likely to be independent of the intensity of input motions; no reduction in the amplitude occurs even in the case of strong shaking. The results are shown to be in consistence with the laboratory observations on shaking table tests and recent field observations that less nonlinearity exists for vertical motions. It is also shown that the possibility exists for using information on spectral ratios between the horizontal and vertical surface motions to quickly identify in situ soil behavior and liquefaction that are not readily covered by conventional field or laboratory experimentation procedures.  相似文献   

10.
This paper presents an empirical model for scaling Fourier amplitude spectra of ground acceleration during strong earthquake shaking in terms of the reported Modified Mercalli Intensity (MMI) and the simplified characteristics of the geologic environment at the recording station. This analysis shows that (i) for the intermediate and high-frequency motions the spectral amplitudes approximately double for every level of the MMI; that (ii) the uncertainties associated with estimation of Fourier spectral amplitudes in terms of MMI are not greater than the uncertainties associated with similar estimation in terms of earthquake magnitude and epicentral distance; that (iii) the high frequency spectral amplitudes tend to be greater on basement rock sites relative to alluvium sites, with this trend being reversed for the low-frequency spectral amplitudes; and that (iv) the spectral amplitudes of very high-frequency vertical shaking are equal to or higher than the corresponding spectral amplitudes for horizontal shaking.  相似文献   

11.
汶川地震远场地震动场地相关性与分析方法评价   总被引:1,自引:0,他引:1       下载免费PDF全文
为考查远场地震动的场地相关性并评价一些场地特性分析方法的适用性,采用不同方法对汶川地震山东省12个远场台站的强震记录进行了分析.选取台站分别位于按建筑抗震设计规范(CBC)场地划分中的Ⅰ—Ⅲ类场地上.地震动记录的分析方法包括傅里叶幅值谱法,地震反应谱法,水平与竖向谱比率法,参考点谱比率法,以及尾波分析等.结果表明,按傅里叶幅值谱法,地震反应谱法,水平与竖向谱比法计算得到的卓越周期均远大于台站场地的卓越周期,不同方法得到的结果之间也有较大差别,且主要反映长周期地震动的卓越频率;参考点谱比率法的结果未反映地震动的卓越周期,也与场地的卓越周期差别较大;对完整记录尾波分析所得的结果比较接近场地的卓越周期.希望本文能为考虑远场地震作用时设计谱的建立,以及场地特性估计时地震动分析方法的选取提供参考依据.  相似文献   

12.
Simple straightforward methods are applied to testtheir ability to detect the non-linear response of thesoil. Recordings of the main shock and aftershocks ofthe 1995, Hyogo-ken Nanbu (Kobe) earthquake are used.Non-linear effects are investigated using twodifferent techniques, on a collection of data for 12sites situated on different geological structures inthe Kobe and Osaka areas. The first method used is theso-called receiver functions technique (Langston,1979), which consists of computing the spectral ratiobetween horizontal and vertical components of motion.This ratio has been shown to reveal the fundamentalfrequency of a site (Lachet and Bard, 1994; Lachet etal., 1996; Theodulidis et al., 1995, 1996). For eachsite, recordings of the main shock and a set ofaftershocks are considered. The variation of thisspectral ratio for different values of the maximumacceleration recorded at a site is investigated. Bothvariations of the amplitude of the H/V ratio (due tonon-linear behavior, on the horizontal components inparticular) and of the frequency position of theamplified band-width are observed. The secondtechnique used in this study is related to thevariation of the high frequency content of therecordings during the main-shock and its aftershocks.The high frequency spectral decay of the motion,characterized by parameter, is assumed to berelated mainly to the near-surface attenuation. Itshould then increase with increasing peak velocity, incase of non-linearity. The value of kappa iscalculated for the 12 sites in the Kobe area, fordifferent types of soil conditions, and againdifferent values of peak ground acceleration.Variations of kappa are then related to non-linearbehavior of the soil during the Kobe earthquake.  相似文献   

13.
陈伯舫  冯戬云 《地震学报》1988,10(2):192-205
本文用三维有限差分法研究转换函数和磁场振幅比的某些源场效应,这些物理量常用于地震预报的研究工作。我们研究了几种水平均匀源场的情况,其中包括圆偏振的源场和极化方向不同的几种线性枞化源场。结果表明,即使在最简单的均匀水平源场的情况下,磁场振幅比肯定受源场变化的影响。然而,单台转换函数就不受均匀水平源场性质变化的影响。因此,转换函数随时间的变化适用于监测地震前兆,尤其适用于中低纬度地区,因该地区的源场垂直分量比较小。   相似文献   

14.
Site effects in Mexico City are discussed in terms of simple 1D, one-layer, linear models. The analysis is focussed on two parameters: dominant period and maximum amplification relative to a firm site within the city. The data used is a compilation of strong motion data and microtremor measurements. Strong motion data consist of digital acceleration records for nine events recorded by the Accelerographic Network of Mexico City. The authors analyzed spectral ratios of horizontal components of soft soil sites relative to an average of firm site observations for this data set. Dominant period, maximum relative amplification and an estimate of material damping were computed from the empirical transfer functions thus obtained. Microtremor data were compiled from measurement of different groups during the period 1985–1992. In all, 409 measurement points were analyzed. Values of dominant period obtained from microtremor measurements are in excellent agreement with those obtained from empirical transfer functions for strong motion data. The synthesis of results allows us to draw a detailed and robust map of dominant period for Mexico City. Based on this map, the authors propose some modifications to the current microzonation of Mexico City and evaluate a proposed model to account for site effects in this city.  相似文献   

15.
Soil amplification characteristics are investigated using data from the Chibaken‐Toho‐Oki earthquake and its aftershocks recorded at Chiba dense array in Japan. The frequency‐dependent amplification function of soil is calculated using uphole‐to‐downhole spectral ratio analysis, considering the horizontal components of shear wave. The identified spectral ratios consistently demonstrate the splitting of peaks in their resonance frequencies and low amplification values in comparison with a 1D model. The torsional behaviour and horizontal ground motion coupling are clarified as the reasons for these phenomena at the site. To prove the hypothesis, the torsional motion is directly evaluated using the data of the horizontal dense array in different depths at the site. The comparison between Fourier spectra of torsional motion and identified transfer functions reveals the peaks at the same frequencies. The wave equation including torsion and horizontal motion coupling is introduced and solved for the layered media by applying wave propagation theory. Using the developed model, the effects of torsional motion with horizontal motion coupling on soil transfer function are numerically examined. Splitting and low amplification at resonance frequencies are confirmed by the results of numerical analysis. Furthermore, the ground motion in two horizontal directions at the site is simulated using site geotechnical specification and optimizing the model parameters. The simulated and recorded motions demonstrate good agreement that is used to validate the hypothesis. In addition, the spectral density of torsional ground motions are compared with the calculated one and found to be well predicted by the model. Finally, the results are used to explain the overestimation of damping in back‐calculation of dynamic soil properties using vertical array data in small strain level. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Nowadays, most of the site classifications schemes are based on the predominant period of the site as determined from the average horizontal to vertical spectral ratios of seismic motion or microtremor. However, the difficulty lies in the identification of the predominant period in particular if the observed average response spectral ratio does not present a clear peak but rather a broadband amplification or multiple peaks. In this work, based on the Eurocode-8 (2004) site classification, and assuming bounded random fields for both shear and compression waves-velocities, damping coefficient, natural period and depth of soil profile, one propose a new site-classification approach, based on “target” simulated average \( H/V \) spectral ratios, defined for each soil class. Taking advantage of the relationship of Kawase et al. (Bull Seismol Soc Am 101:2001–2014, 2011), which link the \( H/V \) spectral ratio to the horizontal (\( HTF \)) over the vertical (\( VTF \)) transfer functions, statistics of \( H/V \) spectral ratio via deterministic visco-elastic seismic analysis using the wave propagation theory are computed for the 4 soil classes. The obtained results show that \( H/V \) and \( HTF \) have amplitudes and shapes remarkably different among the four soil classes and exhibit fundamental peaks in the period ranges remarkably similar. Moreover, the “target” simulated average \( H/V \) spectral ratios for the 4 soil classes are in good agreement with the experimental ones obtained by Zhao et al. (Bull Seismol Soc Am 96:914–925, 2006) from the abundant and reliable Japanese strong motions database Kik-net, Ghasemi et al. (Soil Dyn Earthq Eng 29:121–132, 2009) from the Iranian strong motion data, and Di Alessandro et al. (Bull Sesismol Soc Am 106:2, 2011.  https://doi.org/10.1785/0120110084) from the Italian strong motion data. In addition to the 4 EC-8 standard soil classes (A, B, C and D), the superposition of the 4 target \( H/V \) reveals 3 new boundary site classes; AB, BC and CD, for overlapping \( V_{s,30} \) ranges when the predominant peak is not clearly consistent with any of the 4 proposed classes. Finally, one proposes a site classification index based on the ratio between the cross-correlation and the mean quadratic error between the in situ \( H/V \) spectral ratio and the “target” one. In order to test the reliability of the proposed approach, data from 139 sites were used, 132 collected from the Kik-net network database from Japan and 7 from Algeria. The site classification success rate per site class are around 93, 82, 89 and 100% for rock, hard soil, medium soil and soft soil, respectively. Zhao et al. (2006) found an average success for the 4 classes of soil close to 60%, similar to what one found in the present study (63%) without considering the new soil classes, but much smaller if one considers them (86%). In the absence of \( V_{s,30} \) data, the proposed approach can be an alternative to site classification.  相似文献   

17.
In this study, the effect of ground geology on the acceleration response spectra is studied at 32 sites in Gujarat, India. The sites are grouped into Proterozoic, Mesozoic, Tertiary and Quaternary. The normalized acceleration response spectra at 5% damping of 407 strong ground motions (horizontal and vertical components) recorded at these sites varying in magnitude from 3.0 to 5.7 are determined. The study shows that the shape of the acceleration response spectra is influenced by the regional geology and local site conditions. The peak of maximum horizontal spectral amplification is between 0.03 and 0.05 s in Proterozoic formations, 0.06 and 0.10 s in Mesozoic formations, 0.06 and 0.08 s in Tertiary and 0.12 s in Quaternary formations. The maximum vertical spectral acceleration is at 0.025 s in Proterozoic, 0.07 s in Mesozoic, 0.05 s in Tertiary and 0.10 s in Quaternary formations. The average acceleration amplification factor in all the geological formations is between 2.5 and 3.0 both in horizontal and vertical components. It has been observed that acceleration response spectra at sites having same geological formations are also influenced by local site conditions. The study shows that the acceleration response spectrum in the current Indian code applicable for the entire country underestimates the seismic forces at hard-rock sites and overestimates at soft-soil sites. Using recorded strong motion data with Mw ranging from 3.5 to 5.7, an attenuation relationship is developed at six periods to predict geometric mean of horizontal spectral amplitudes for rock and soil sites. The spectral amplitudes predicted with the attenuation relationship match well with the observed one within statistical limits for hypocentral distances less than 200 km.  相似文献   

18.
Building codes have widely considered the shear wave velocity to make a reliable subsoil seismic classification, based on the knowledge of the mechanical properties of material deposits down to bedrock. This approach has limitations because geophysical data are often very expensive to obtain. Recently, other alternatives have been proposed based on measurements of background noise and estimation of the H/V amplification curve. However, the use of this technique needs a regulatory framework before it can become a realistic site classification procedure. This paper proposes a new formulation for characterizing design sites in accordance with the Algerian seismic building code(RPA99/ver.2003), through transfer functions, by following a stochastic approach combined to a statistical study. For each soil type, the deterministic calculation of the average transfer function is performed over a wide sample of 1-D soil profiles, where the average shear wave(S-W) velocity, V s, in soil layers is simulated using random field theory. Average transfer functions are also used to calculate average site factors and normalized acceleration response spectra to highlight the amplification potential of each site type, since frequency content of the transfer function is significantly similar to that of the H/V amplification curve. Comparison is done with the RPA99/ver.2003 and Eurocode8(EC8) design response spectra, respectively. In the absence of geophysical data, the proposed classification approach together with micro-tremor measures can be used toward a better soil classification.  相似文献   

19.
Damping modification factors (DMF) are used to adjust response spectral values corresponding to damping 5% of critical to other damping levels. Ground motions recorded are orderly grouped according to moment magnitude, site conditions and closest distance. Near-fault motion records with closest distance closer than 10 km are not included in this paper. Based on the classification, the effects of the three seismological parameters on the median DMF are investigated. Consequently, the influence of site class reduces with increasing earthquake magnitude, and the effect of closest distance generally can be neglected with closest distance closer than 100 km except for rock sites. Except for soft soil sites, moment magnitude has a more significant effect than closest distance and site conditions, and the median DMF from acceleration spectra are most sensitive to seismological parameters. For soft soil sites, the median DMF only vary a little with moment magnitude and closest distance.  相似文献   

20.
An extensive campaign—including detailed geologic and geotechnical surveys both existing and news as well as noise measurements—was conducted along a cross-section in order to define both geometry and soil properties (mainly the shear wave velocity) of the main formations in Aigion city. Aigion city is located in the Gulf of Corinth, Greece, a highly seismic region of the Aegean Sea. The main objective of the accurate 2D soil model is its use in site response modeling and in the interpretation of observations from a vertical down-hole accelerograph array. This model revealed a complex geologic structure with a multi-faulted shear zone related to the Aigion fault. The defined subsurface structure offered the possibility for its correlation with estimated site effects, in terms of spectral ratios. Two different data sets, earthquakes recorded at down-hole accelerograph network and noise measurements at 17 sites, were used. To translate the empirical transfer functions with the geologic structure, the 1D estimates were also computed. All these results are consistent, indicating a satisfactory correlation between the soil model and preliminary site response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号