共查询到20条相似文献,搜索用时 10 毫秒
1.
New field observations on granitoids and associated lithounits in some parts of Indus-Shyok Suture Zones have been documented in order to re-establish the geological relationships between various volcano-plutonic magmatic lithounits. Careful examination of outcrops and contact relationships between the various lithounits have pin-pointed the sequence of geological events. Field features of granitoids exposed along Leh-Saboo-Khardung_La suggest multiple pulses of mafic-felsic magma interactions (mingling to mixing) with almost 25% of the mafic to hybrid magma input in the evolution of the eastern part of Ladakh batholith. Along Khardung_La-Shyok-Diskit, thick sequence of volcanic lithounits is exposed, which dominantly consist of massive basaltic andesite, porphyritic andesite, dacite and rhyolite forming Khardung Formation. On the other hand Shyok Formation, dipping opposite to the Khardung Formation, composed predominantly of meta-sedimentary lithounits and subordinate amount of volcanic materials at present exposed level. Spectacular intrusive contacts of Ladakh granitoids with metavolcanics and meta-sedimentary country rocks of Shyok Formation near Diskit can be observed, which are manifested by ubiquitous xenoliths near the marginal parts. Although the nature of granitoid melt invasion into country-rocks was relatively winty, granitoid melt has produced leucogranite-pegmatite system because of devolatization and decompression effects. Frequent xenoliths of porphyritic andesite and dacite roof pendants are being reported in Tirit granitoids, which strongly suggest sub-volcanic emplacement of granitoid melt, extensive assimilation and roof collapse of overlying volcanic materials. It is more likely that the xenoliths hosted in Tirit granitoids belong to Shyok volcanics. It is suggested that multiple pulses of coeval mafic and felsic magmatism occurred extensively and emplaced at differential crustal levels. 相似文献
2.
依据地质学、岩石学和年代学特征,西天山特克斯达坂一带花岗岩类被解体为早石炭世库勒萨依序列和早二叠世其那尔萨依序列,其同位素年龄分别为347Ma、291~292Ma。通过对该花岗岩类地球化学特征的研究得出,库勒萨依序列A/CNK平均值为1,K2O/Na2O平均值为0.96,(Na2O+K2O)/Al2O3平均值为0.66,里特曼指数δ平均值为3.2,为准铝质钙碱性花岗岩;其那尔萨依序列A/CNK平均值为1.05,K2O/Na2O平均值为1.17,富钾,为过铝质碱性花岗岩。库勒萨依序列为形成于岛弧环境的钙碱性花岗岩,是古亚洲洋向北俯冲的产物;其那尔萨依序列为形成于后造山期松弛阶段的碱性花岗岩。 相似文献
3.
采用构造地球化学方法,在黄埠岭-七厘山测区约13.8km2范围,共采集865个样品,测试了Au、Ag、Cu、Pb、Zn、Ni、Ni、Co、Mo、Sn、As、Sb、Hg、Ba、B、Mn、V、Ti、Cr等19种元素.Au异常的分布与测区已知矿体分布范围相吻合,其中黄埠岭测区Au异常范围最大、强度最高,七厘山测区及凤凰庄-选... 相似文献
4.
康古尔构造带位于东天山觉罗塔格造山带北部,是构建中亚造山带晚古生代增生造山过程的关键。系统建立康古尔构造带的变形样式和变形条件,对进一步理解其构造背景和动力学机制具有重要意义。本文基于康古尔构造带红丘陵段构造解析、糜棱岩显微构造和石英c轴组构分析,厘定出2期构造变形:D1期为南北向挤压韧性剪切,变形温度为500~650℃;D2期为右行剪切,变形温度小于350℃。综合已有区域构造热年代学数据分析认为,D1期变形时间为294~280 Ma,形成于康古尔有限洋盆闭合后的中天山地块与吐哈地块南北向碰撞挤压过程,D2期右行剪切发生于276~242 Ma的后碰撞陆内缩短环境。本研究可为康古尔构造带晚古生代构造演化过程提供重要支撑。 相似文献
5.
The northern part of the central India tectonic zone (CITZ) is occupied by the Proterozoic Mahakoshal Belt, which is mainly comprised of granitoids and volcano-sedimentary lithounits. The granitoids (ca. 1880–1710 Ma) are exposed as small circular to elliptical-shaped, stock-like intrusive bodies, such as Nerueadamar granitoids (NG), Tumiya granitoids (TG), Jhirgadandi granitoids (JG), Dudhi granite gneiss (DG), Raspahari granitoids (RG), Katoli granitoids (KG), and Harnakachar granitoids (HG), collectively forming the granite gneissic complex (GGC). The geochemistry of biotites, host granitoids, and enclaves from these plutons has been investigated in order to understand the redox condition and likely tectonic affinity of host granitoids. The Al 2O 3–MgO–FeO t contents and operated elemental substitution in biotites strongly suggest the diverse nature of host magmas such as calc-alkaline, metaluminous (I-type), peraluminous (S-type), and transitional between I- and S-types, which appear to have formed in subduction zone and syn-collisional tectonic settings. The transitional (I-S)-type granitoids inferred based on biotite compositions, however, represent both metaluminous (HG) and peraluminous (DG and KG) granitoids in terms of whole-rock molar A/CNK (Al 2O 3/CaO + Na 2O + K 2O) ratios. Ages of granitoid magmatism and its field association with contemporaneous volcano-sedimentary lithounits clearly mark the post-collisional tectonic setting, which contradicts the subduction-related tectonic setting inferred from biotites of JG and microgranular enclave (JE) hosted in JG. Whole-rock major and trace elements broadly suggest the existence of collision tectonics during the formation of granitoid plutons. The JG, KG, and DG contain a bt-Kf-mag-qtz assemblage, and their parental magmas evolved under moderate oxidizing environments (?O 2 = ?12.03 to ?13.27 bars). On the other hand, RG (bt-gt-Kf-pl-qtz), NG (bt-ms-Kf-pl-qtz), and TG (bt-ms-Kf-pl-qtz) represent pure crustal-derived magmas evolved in strongly reducing conditions formed under a syn-collisional tectonic setting as evident from their mineral assemblages and biotite and whole-rock compositions. Granitoid plutons of the Mahakoshal Belt were most likely formed during amalgamation of the Columbian supercontinent. 相似文献
6.
本文在钻井和二、三维地震数据精细解释的基础上,详细研究了柴北缘西段晚新生代弧形构造带演化历史和油气成藏过程。认为柴北缘西段是由一系列沿造山带前缘展布的弧形逆冲断裂和褶皱组成的弧形构造带。晚新生代以来的构造演化具有自山前向盆内扩展,东西两侧向中间传播的特点,油气运聚与构造演化过程紧密耦合。各弧形构造带两侧形成时间早,生储盖配置好,且具有古构造背景,是油气运聚的长期指向,应是下一步优先勘探目标。 相似文献
7.
The geochemistry of eclogites and garnet-amphibolites from Tso-Morari region, Ladakh, India has been investigated to characterize their protoliths on the basis of immobile elements, especially trace elements including REE. The eclogites and garnet-amphibolites have coherent compositions, except for the UHP metamorphic minerals being preserved in eclogites. Compositionally, the metabasites range from ‘depleted’ to ‘enriched’, and span from within-plate basalts (WPB) to MORB fields, and match with various enriched or ‘transitional’ MORB types (e.g., on Ti–Zr–Y and Nb–Zr–Y ternary plots). Isotopically they have Sr i ratio 0.706 which is similar to some of the Ocean Island Basalt (OIB). The rocks under study suggest that the enriched components are probably derived by melting of a mantle source with an enriched OIB-type component rather than due to the crustal contamination. We propose a rift environment for their protoliths and relate to advanced intra-continental rift situation. Furthermore, our geochemical studies envisage an initial phase of plume activity (Cambrian or earlier) resulting in basaltic magma in the eclogitic layers at sub-lithospheric levels, wherein they were subjected to crystallization under ultra-high pressure conditions. At a later stage the reactivation of faults (probably during Permo-Triassic times) acted as channels for the emplacement of the high pressure rocks in the continental crust. Subsequently, the ultra-high pressure rocks got re-equilibrated as amphibolites, with some remaining as relict eclogites, which later got exposed to the surface during various phases of the Himalayan uplift. 相似文献
8.
琅勃拉邦构造带内放射虫硅质岩含有放射虫Entactinia vulgaris Won, Entactinosphaera palimpola Foreman和Belowea variabilis (Ormiston et Lane),时代为早石炭世,为老挝境内首次报告。硅质岩样品具有很高的SiO2质量分数(95.29%~98.17%),大部分样品表现出相类似的稀土配分模式,部分样品配分模式图表现为上凸状,具有中稀土富集,均具有明显的Ce负异常,Ce/Ce*值为0.64~0.74,其中部分样品具有Eu的负异常,为0.58~0.68。Y/Ho比值为31.05~40.96,类似日本Sasayama中-晚二叠世的远洋硅质岩。地球化学显示其为含酸性火山碎屑非热液成因的远洋硅质岩。这些研究证实了在思茅板块和印支板块之间存在一个开阔的石炭纪时期弧后盆地。 相似文献
9.
One of the key segments in the conjunction zone between the Baikal folded area of Baikalides, the Early Precambrian Aldan-Stanovoi shield, and the Barguzin-Vitim superterrane involving fragments of the Early Precambrian, Baikalian, and Paleozoic folded complexes is discussed. Within this segment, complicated tectonic contacts between the Late Riphean complexes of the Param-Shaman paleotrough zone in the Baikal-Muya foldbelt of Baikalides and Lower Precambrian complexes of the Kalar metamorphic terrane are mapped. The results of the U-Pb zircon isotopic dating (TIMS and SHRIMP-II) of gneisses-syenites from the Burgai Complex and gneissoid granites of the Drevnestanovoi Complex of the Early Precambrian age, as well as results of the Nd-isotope study of reference magmatic and stratified complexes of the region are presented. The ages of the oldest gneiss-syenites from the Burgai Complex and overlying plagiomigmatites in the conjunction zone have been established to differ by less than 1 Ma, making up 601 ± 5 Ma. Drevnestanovoi gneissoid granites in the conjunction zone are of the Late Paleozoic age (325–270 Ma). According to Nd isotopic data, the age of the source, from which Vendian gneisses-syenites and granites were melted, was established to be not older than the Riphean, and the material of the old continental crust to be the protolith of the upper Paleozoic granites. It has been inferred that the collision junction of Baikalian and Early Precambrian structures of the Baikal folded area and the Aldan-Stanovoi Shield into a single block took place 600 Ma ago. 相似文献
10.
In the Ladakh–Zanskar area, relicts of both ophiolites and paleo-accretionary prism have been preserved in the Sapi-Shergol mélange zone. The paleo-accretionary prism, related to the northward subduction of the northern Neo-Tethys beneath the Ladakh Asian margin, mainly consists of tectonic intercalations of sedimentary and blueschist facies rocks. Whole rock chemical composition data provide new constraints on the origin of both the ophiolitic and the blueschist facies rocks. The ophiolitic rocks are interpreted as relicts of the south Ladakh intra-oceanic arc that were incorporated in the accretionary prism during imbrication of the arc. The blueschist facies rocks were previously interpreted as oceanic island basalts (OIB), but our new data suggest that the protolith of some of the blueschists is a calc-alkaline igneous rock that formed in an arc environment. These blueschists most likely originated from the south Ladakh intra-oceanic arc. This arc was accreted to the southern margin of Asia during the Late Cretaceous and the buried portion was metamorphosed under blueschist facies conditions. Following oceanic subduction, the external part of the arc was obducted to form the south Ladakh ophiolites or was incorporated into the Sapi-Shergol mélange zone. The incorporation of the south Ladakh arc into the accretionary prism implies that the complete closure of the Neo-Tethys likely occurred by Eocene time. 相似文献
11.
Abstract The Shangdan fault in the Qinling Orogenic Belt of China is an important boundary between the Caledonian North Qinling Fold Belt and the Hercynian South Qinling Fold Belt. In the Danfeng area, the fault zone strikes WNW–ESE and comprises four strongly deformed zones and three weakly deformed domains parallel to each other. The fault zone has a complex history of multiple deformation and each domain has a different tectonic style that was formed at different stages of the deformation. The rocks exposed in the weakly deformed domains belong to the Qinling, Danfeng and Liuling Groups. In this paper, the mineral chemistry and mineral assemblages are used to infer the metamorphic conditions and the P–T paths of these units. The metamorphic units in and near the fault zone have different metamorphic conditions and histories that are correlated with the tectonic evolution of the fault zone. Caledonian–Hercynian uplift and southward thrusting of the Proterozoic Qinling Group, over the Danfeng and the Liuling Groups, produced the main metamorphic and tectonic features of the fault zone. Folding of both the Liuling Group and the thrust faults during the Hercynian–Indosinian was accompanied by northward thrusting. 相似文献
12.
The Western Qinling Orogen(WQO) is characterized by voluminous distribution of Indosinian granitoids,the formation of which provides an important window to unravel the geochemical and geodynamic evolution and associated metallogeny.Here we investigate a group of intrusions termed "Five Golden Flowers" based on petrological,geochemical,zircon U-Pb geochronological and Lu-Hf isotopic studies on the granitoids and their mafic microgranular enclaves(MMEs).Our results show that these intrusions are genetically divided into two types,namely,magma-mixing and highly fractionated.The Jiaochangba,Lujing,Zhongchuan,and Luchuba granitoids are biotite monzogranites(220±0.8 Ma to 217±2.6 Ma) with abundant coeval MMEs(220±.1 Ma to 217±2.7 Ma).The rocks contain moderate to high SiO_2,high MgO,Rb,Sr,Ba,and Th contents,but low TiO_2,P_2 O_5,and Sc values,A/CNK of 1.1,and a range of ε_(Hf)(t) values of-11.7 to +2.23 with corresponding T_(DM2)values of 1967-1228 Ma.The MMEs possess K-feldspar megacrysts,abundant acicular apatites,and show lopsided textures.They have lower SiO_2,Al_2 O_3,and Th contents,but higher MgO,TiO_2,and Sc,with ε_(Hf)(t) values of-18.0 to +3.18 and T_(DM1) of 849-720 Ma.The data indicate that the MMEs were derived from a magma sourced from the enriched lithospheric mantle.We suggest that these host granitoids were produced by partial melting of latePaleoproterozoic to early-Mesoproterozoic lower crust with the involvement of Neoproterozoic SCLM-derived mafic magmas.The Baijiazhuang pluton is dominantly composed of leucogranite(muscovite granite and twomica monzogranite,216±1.5 Ma) without MMEs.The rocks are peraluminous with high A/CNK(1.06-1.27).Compared with the other four granitoids,the Baijiazhuang leucogranite shows higher SiO_2 content,markedly lower concentrations of TiO_2,MgO,Al_2 O_3,CaO,and Fe_2 O_3~T,and lower LREE/HREE and(La/Yb)N values.These leucogranites are also rich in Rb,Th,and U,and display marked depletions in Ba,Sr,Ti,and Eu,indicating that they experienced significant fractionation.Zircon ε_(Hf)(t) values(-10.2 to-3.27) and T_(DM2)(1868-1424 Ma),as well as the Nb/Ta and K_2 O/Na_2 O values are similar to the other four granitoids,indicating that they are likely to have been derived from a similar source;with sediments playing only a minor role in the magma generation.The low contents of Yb and Y suggest that their partial melting was controlled by garnets and micrographic texture of K-feldspar reflects high-temperature melting through undercooling.Based on the above features,we infer that the Baijiazhuang leucogranite likely represents the product of high degree fractionation of the I-type biotite monzogranite magma which generated the other four granitoids at relatively high temperatures,within magma chambers at mid-crust depths.We propose that the granitoid suite was formed in the transitional setting from synto post-collision during the collisional orogeny between the SCB and NCB,following break-off of the subducted South China Block lithosphere during 220-216 Ma. 相似文献
13.
庄科岩片位于南秦岭南缘勉略构造带.前人系统的岩石地球化学研究表明,庄科岩片变玄武岩属拉斑玄武岩系列,整体表现出N-MORB特征,为勉略洋盆残余,但一直未获得高精度的测年数据.本文首次获得庄科岩片洋壳型变玄武岩LA-ICP-MS锆石U-Pb年龄为999±4Ma(MSWD=0.08,n=25)、991±6Ma(MSWD=1... 相似文献
14.
The Nidar ophiolite complex is exposed within the Indus suture zone in eastern Ladakh, India. The suture zone is considered to represent remnant Neo-Tethyan Ocean that closed via subduction as the Indian plate moved northward with respect to the Asian plate. The two plates ultimately collided during the Middle Eocene. The Nidar ophiolite complex comprises a sequence of ultra-mafic rocks at the base, gabbroic rocks in the middle and volcano-sedimentary assemblage on the top. Earlier studies considered the Nidar ophiolite complex to represent an oceanic floor sequence based on lithological assemblage. However, present study, based on new mineral and whole rock geochemical and isotopic data (on bulk rocks and mineral separates) indicate their generation and emplacement in an intra-oceanic subduction environment. The plutonic and volcanic rocks have nearly flat to slightly depleted rare earth element (REE) patterns. The gabbroic rocks, in particular, show strong positive Sr and Eu anomalies in their REE and spidergram patterns, probably indicating plagioclase accumulation. Depletion in high field strength elements (HFSE) in the spidergram patterns may be related to stabilization of phases retaining the HFSE in the subducting slab and / or fractional crystallization of titano-magnetite phases. The high radiogenic Nd- and low radiogenic Sr-isotopic ratios for these rocks exclude any influence of continental material in their genesis, implying an intra-oceanic environment. Nine point mineral–whole rock Sm–Nd isochron corresponds to an age of 140 ± 32 Ma with an initial 143Nd/144Nd of 0.513835 ± 0.000053 (ENd t = + 7.4). This age is consistent with the precise Early Cretaceous age of Hauterivian (132 ± 2 to 127 ± 1.6 Ma) to Aptian (121 ± 1.4 to 112 ±1.1 Ma) for the overlying volcano-sedimentary (radiolarian bearing chert) sequences based on well-preserved radiolarian fossils (Kojima, S., Ahmad, T., Tanaka, T., Bagati, T.N., Mishra, M., Kumar, R. Islam, R., Khanna, P.P., 2001. Early Cretaceous radiolarians from the Indus suture zone, Ladakh, northern India. In: News of Osaka Micropaleontologists (NOM), Spec. Vol., 12, 257–270.) and cooling ages of 110–130 Ma based on 39Ar/40Ar for Nidar–Spontang ophiolitic rocks (Mahéo, G., Berttrand, H., Guillot, S., Villa, I. M., Keller, F., Capiez, P., 2004. The South Ladakh Ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with implications for the closure of the Neo-Tethys. Chem. Geol., 203, 273–303.). As these gabbroic and volcanic rocks are interpreted to be arc related, the new Sm–Nd age data may indicate that intra-ocean subduction in the Neo-Tethyan ocean may have started much before 140 ± 32 Ma as this date is interpreted as the age of crystallization of the arc magma. Present and published age data on the arc magmatic rocks from the Indus suture zone may collectively indicate episodic magmatism with increasing maturity of the arc from more basic (during ~ 140 ± 32 Ma) when the arc was immature through intermediate (andesitic/granodioritic) at ~ 100 Ma to more felsic (rhyolitic/dioritic) magmatism at ~ 50–45 Ma, when the Indian and the Asian plates collided. 相似文献
15.
针对柴达木盆地北缘构造混杂岩带中不同成因类型镁铁质—超镁铁质和高压—超高压岩的组成、俯冲-碰撞-折返机制及形成演化过程等关键地质问题,在柴北缘鱼卡地区开展了解剖地质填图工作,取得了系列新认识:查明了深俯冲地质体与原地岩块的接触关系,表现为早期韧性—脆韧性剪切带接触,后期叠加逆冲推覆;查明了深俯冲地质体中榴辉岩主要呈透镜状、似层状产出,表明榴辉岩原岩在峰期变质之前就发生了分层剪切;查明了片麻状花岗岩体内部榴辉岩的产出特征,榴辉岩以鱼卡岩群残蚀体产出于片麻状花岗岩体中;厘定了深俯冲地质体内部变形序列,识别出4期构造变形组合,表现为挤压型变形,指示本区经历了多期挤压汇聚作用;明确了超基性岩体的就位环境,与深俯冲地质体为侵入接触关系. 相似文献
16.
勉略构造带是印支期华北板块与扬子板块碰撞,并叠加后期陆内变形作用形成的复杂蛇绿构造混杂岩带,勉略构造带的形成演化对全面理解秦岭造山带构造演化具有非常重要的研究意义.本文以勉略构造带广泛发育的褶皱、断裂等构造现象为研究对象,通过详细的构造解析和古应力反演,揭示出勉略构造带经历三期构造变形:D1期变形为NW-SE向挤压,以发育轴面直立的紧闭同斜褶皱和高角度逆断层为特征,形成于早—中三叠世华北与扬子两大块体碰撞阶段;D2期变形为NE-SW向挤压,主要发育左行走滑剪切变形,叠加于早期构造形迹之上,构造带内普遍发育东西向近水平拉伸线理,局部发育倾竖褶皱,形成于晚三叠世—中侏罗世,该阶段秦岭造山带由早期的碰撞转为陆内变形,沿东西向断裂带发生大规模左行走滑;D3期变形为N-S向挤压,在晚侏罗世—白垩纪多向汇聚构造体制下,勉略构造带受南北向挤压,形成一系列共轭剪切断裂,该期断裂切割前两期构造变形,区域上表现为北侧的大巴山、西秦岭向南逆冲推覆,扬子北缘沿米仓山一带向北楔入秦岭造山带,形成向南突出的大巴山弧形逆冲推覆构造带、西秦岭武都-舟曲弧形构造带和一系列北东、南西走向的共轭剪切断裂系. 相似文献
17.
在哀牢山构造带的哀牢山断裂与花山-雅邑断裂之间出路大量不同构造环境的岩浆岩。除双沟蛇绿岩外,尚发现有景东火山岩和墨江火山岩。地球化学研究表明,景东火山岩具有类似于富集型洋中脊玄武岩(P-MORB)地球化学特征,形成于以双沟蛇绿岩为代表的哀牢山洋盆先期的陆内裂谷构造环境;墨江火山岩具有岛弧火山岩地球化学特征,形成于哀牢山洋盆向西俯冲消减作用下的岛弧构造环境。景东裂谷型火山岩和墨江岛弧火山岩分别代表了 相似文献
18.
东天山—北山地区是中国重要的金属成矿带,对于其晚二叠世—中三叠世构造演化的认识,仍存在较大分歧。东天山东段国宝山地区出露有一系列晚二叠世—中三叠世花岗质岩石,包括花岗闪长岩、二长花岗岩、石英正长岩、正长花岗岩和天河石花岗岩。该系列岩体整体以富硅、富碱为特征,其中花岗闪长岩、二长花岗岩和石英正长岩具有钾质和富镁特征,轻稀土相对重稀土更富集(LREE/HREE=0.86),稀土配分曲线整体右倾,呈弱Eu负异常(δEu=0.40~0.68);而正长花岗岩与天河石花岗岩类似,具钠质和铁质特征,富集Ta、Rb,重稀土元素较轻稀土更富集(LREE/HREE=5.11~17.17),稀土配分曲线呈海鸥式,具明显Eu负异常(δEu=0.03)。花岗闪长岩锆石206Pb/238U表面年龄集中于255~250 Ma,早于天河石花岗岩247~240 Ma的年龄。岩石地球化学特征表明正长花岗岩与天河石花岗岩同属A型花岗岩,形成于板内构造环境;花岗闪长岩、二长花岗岩和石英正长岩属Ⅰ型花岗岩,形成于后碰撞环境,两个岩石组合属不同的岩浆系列,无成因关系。研究认为东天山东段国宝山地区在255~250 Ma仍处于后碰撞环境,~247 Ma进入板内伸展构造环境。 相似文献
19.
纸房沟岩片位于勉略构造带略阳地区。通过细致的岩石学和地球化学研究,将纸房沟岩片内的火山岩分为拉斑玄武岩系列(Ⅰ类)和钙碱性火山岩系列(Ⅱ类)。Ⅰ类火山岩稀土配分曲线左倾,富Na贫P,整体具有N- MORB特点,形成于洋脊构造环境。相比Ⅰ类火山岩,Ⅱ类火山岩具有更高的SiO2(49.02%~61.86%)和K2O(0.32%~1.55%)含量,相对亏损Nb、Ta、P和Ti,形成于陆缘弧构造环境。Ⅱ类火山岩锆石Lu- Hf同位素测试结果显示,εHf(t)值主体为负值,介于-8.01~+0.77,表明其主要为古老地壳物质熔融成因。Ⅱ类火山岩LA- ICP- MS锆石U- Pb测年结果为854±3Ma(MSWD=0.12, n=30)、844±4Ma (MSWD=0.03, n=15),表明纸房沟岩片火山岩结晶时代为新元古代早中期。综合前人成果认为,纸房沟岩片火山岩为新元古代勉略洋盆俯冲的产物,俯冲作用一直持续到800Ma左右,该俯冲过程很可能是对全球性Rodinia超大陆聚合事件的响应。 相似文献
20.
The Cambro‐Ordovician Glenelg tectonic zone of western Victoria is a distinctive metamorphic‐igneous segment of the Delamerian Orogenic Belt comprising two northwest‐striking regional metamorphic segments of andalusite‐sillimanite type prograding towards an axial granitic batholith. The second of five deformations (D 2) was most significant, producing isoclinal folds, transposition and a pervasive regional foliation (S 2). Southwest of the central batholith, biotite to migmatite zones contain mainly quartzo‐feldspathic rock (turbiditic metagreywacke, quartzo‐feldspathic schist and migmatite), plus less common metaquartzite and calc‐silicate rocks and minor metapelite. Metagabbro, metadolerite and amphibolite typically have the chemistry of mid‐ocean ridge basalts. Serpentinite pods and sheets were tectonically introduced to low‐grade areas. Northeast of the central batholith, quartzo‐feldspathic rock occupies the sillimanite and migmatite zones exclusively, with a regional concentration of pegmatites adjacent to the zone boundary. Gross interleaving of quartzo‐feldspathic schist, migmatite, pegmatite and muscovite‐bearing granitic rock is characteristic. Peak metamorphic conditions of 550 MPa at 640°C leading to migmatite formation were established by D 2 time and accompanied by tonalite‐granodiorite and pegmatite emplacement. Subsequently, the thermal high contracted to the northeast culminating in the more extensive syn‐, post‐D4 to pre‐D5 granitic magmatism. 相似文献
|