首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two kinds of blanket of fine grains in the Earth's upper atmosphere are possible: a blanket of reflective dielectric particles and one of absorbing metallic particles. The first is a trigger for the onset of an ice-age, and the second a trigger for the disappearance of an ice-age. The facts support the view that it was a blanket of absorptive particles which caused the extinction of the mammoths.  相似文献   

2.
Richard W. Zurek 《Icarus》1978,35(2):196-208
This paper examines the solar heating of the Martian atmosphere during the 1971 global dust storm observed by Mariner 9. Radiative scattering as well as absorption is included by utilizing the delta-Eddington approximation to the full radiative transfer equation. The necessary optical parameters are generated by a Mie program which uses a size distribution and a complex refractive index inferred from a number of sources, particularly from recent analyces of Mariner 9 UVS and TV observations. Assuming uniform mixing of the dust, the solar heating per unit mass during a Martian global dust storm is remarkably uniform with height for small solar zenith angles. Heating rates may reach 80°K day? for overhead sunlight. Overall, 20% of the direct insolation is absorbed by the dust-laden atmosphere. Even optically thin widespread dust hazes may produce heating rates of several degrees Kelvin per day.  相似文献   

3.
《Icarus》1986,68(1):99-119
It is proposed that dust storms on Mars that develop during predawn hours may be triggered by a freeze/thaw dust injection process. The model is based on a phenomenon that was observed during the Viking Gas Exchange experiments on Mars, in which adsorbed gas was catastrophically desorbed from soil samples when exposed to humidification at ∼5°C. Similar conditions may develop at midlatitude locations on Mars near perihelion, and a similar humidification-driven desorption process might occur in the soil column. If soils are dampened during humikification, desorbed gases in confined pore spaces could possibly reach 8.6 bar. Diurnal freezing may possibly cause H2O to crystallize within the pores, possibly producing cohesive soil failure, release of the trapped gas, and explosive injection of freeze-dried powdery overburden dust into the atmospheric column. The process could potentially occur at 5–20 cm depth, and the freeze/thaw dust injection event may initiate after 10:00 PM local time (20°S lat). Dust would be injected at velocities approaching 450 m sec−1 and it would remain in the atmosphere for several hours before settling out. The plumes could potentially regenerate diurnally until the growing atmospheric dust load produced sufficient dampening of the diurnal thermal wave to prevent freeze/thaw. Seasonal replenishment of H2O could potentially occur by upward migration from depth during the period between 150 and 475 sols after perihelion. The model was experimentally tested and the results were in good agreement with predictions, although a factor of 14 times more gas evolved from the laboratory samples than from the Viking samples. Most of the characteristics of the predawn storms could possibly be adequately explained by the freeze/thaw injection model, including (1) predawn onsets, (2) postperihelion seasonal occurence, (3) daily recurrence during the initial phases of the storms, and (4) generation of blue clouds (H2O ice) at the storm sites. The process may possibly occur over widespread locations at midlatitudes during seasonal retreat of “tempofrost” from these latitude belts. Permanent low albedo features in these latitude belts may possibly be regions of preferential humidification-induced dust entrainment and net dust removal. The H2O injected into the atmosphere may potentially be a major source of H2SO4 and HCl aerosols, which may possibly chemically react with the regolith to form soluble sulfate and chloride salts. Mg2+ may be preferentially depleted from the dust.  相似文献   

4.
William D. Cochran 《Icarus》1977,31(3):325-347
An analysis of the structure of the Jovian atmosphere, primarily based on center-to-limb variations (CTLV) of the equivalent width of the hydrogen quadrupole 4-0 S(1) line, is presented. These data require that the atmosphere have regions of both long- and short- scattering mean free paths. Two alternative cloud structures which fit the data are developed. The first is a two-cloud model (TCM) consisting of a thin upper cloud and a lower semi-infinite cloud, with absorbing gas between the clouds and above the upper cloud. The second model is a reflecting-scattering model (RSM), in which a gas layer lies above a haze consisting of scattering particles and absorbing gas. The cloud-scattering phase function in both models must have a strong forward peak. The CTLV data require, however, the presence of a backscattering lobe on the phase function, with the backscattering intensity about 4% of the forward scattering. The decrease in reflectivity of all regions from the visible to the ultraviolet is explained by the presence of dust particles mixed with the gas. Most of the ultraviolet absorption in the atmosphere must occur above the upper cloud layer. Particles with a uniform distribution of radii from 0.0 to 0.1 μm with a complex index of refraction varying as λ?2.5 are used. The contrast in reflectivity between belts and zones may be explained by the larger concentration of dust in the belts than in the zones. Spatially resolved ultraviolet limb-darkening curves will help to determine the dust distribution of the Jovian atmosphere. The visible methane bands at λλ 6190, 5430, and 4860 Å are analyzed in terms of these models. We derive a methane-to-hydrogen mixing ratio of 2.8 × 10?3, which is about 4.5 times the value for solar composition.  相似文献   

5.
Some two decades ago, Hoyle and Wickramasinghe (1976) proposed that the physical conditions inside dense molecular clouds favour the formation of amino acids and complex organic polymers. There now exists both astronomical and laboratory evidence supporting this idea. Recent millimeter array observations have discovered the amino acid glycine (NH2CH2COOH) in the gas phase of the dense star-forming cloud Sagittarius B2. These observations would pose serious problems for present-day theories of molecule formation in space because it is unlikely that glycline can form by the gas-phase reaction schemes normally considered for dense cloud chemistry. Several laboratory experiments suggest a new paradigm in which amino acids and other large organic molecules are chemically manufactured inside the bulk interior of icy grain mantles photoprocessed by direct and scattered ultraviolet starlight. Frequent chemical explosions of the processed mantles would eject large fragments of organic dust into the ambient cloud. Large dust fragments break up into smaller ones by sputtering and ultimately by photodissociation of individual molecules. Hence, a sizeable column density (N≈ 1010−1015 cm-2) of amino acids would be present in the gaseous medium as a consequence of balancing the rate of supply from exploding mantles with the rate of molecule destruction. Exploding mantles can therefore solve the longstanding molecule desorption problem for interstellar dense cloud chemistry. A sizeable fraction of the organic dust population can survive destruction and seed primitive planetary systems throughout our galaxy with prebiological organic molecules needed for proteins and nucleic acids in living organisms. This possibility provides fresh grounds for a new version of the old panspermia hypothesis first introduced by Anaxagoras. It is shown that panspermia is more important than asteroid and cometary organic depositions onto primitive Earth. Furthermore, no appeal to Miller-Urey synthesis in a nonoxidizing atmosphere of primitive Earth is then needed to seed terrestrial life. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
When planetary accretion proceeds in the gas disk-solar nebula, a protoplanet attracts surrounding gas to form a distended H2-He atmosphere. The blanketing effect of the atmosphere, hampering the escape of accretional energy, enhances the surface temperature of planets. Furthermore, evaporation of ice or reduction of surface silicate and metallic oxide can supply a huge amount of water vapor into the atmosphere, which would raise the temperature and promote evaporation. Evaporated materials can be efficiently conveyed outward by vigorous convection, and condensed dust particles should keep the atmosphere opaque during accretion. The size of this opaque atmosphere dust blob is defined by the gravitational radius, which exceeds 3 × 108 m when the planetary mass is the Earth's mass (5.97 × 1024 kg). This is larger than the radii of present Jovian planets and so-called brown dwarfs. The expected lifetime of dust blobs is 106–107 yr, which is longer than that of the later gas accreting and cooling stages of Jovian planets. The number of dust blobs could exceed that of Jovian planets. If the gas disk is rather transparent, the possibility of observing such objects with a distended atmosphere may be higher than that of detecting Jovian planets. Contamination of the gas disk by the dust from primary atmospheres is negligible.Paper presented at the Conference on Planetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

7.
《Icarus》1987,70(3):442-468
The predictions of an analytical steady thermally forced viscous model for the zonally averaged global circulation of the Martian atmosphere are compared to observations of atmospheric temperatures and eolian feature directions. The temperature of the winter polar atmosphere is a sensitive indicator of the value of the mean eddy diffusivity v of the atmosphere. For global dust storm season, the observed large warming of the atmosphere over the winter (north) pole during the 1977b storm as well as the distribution and azimuths of Type I(b) dust streaks can be well reproduced if v = 107−108cm2sec−1. Observed northeasterly surface winds at high northern latitudes could be produced by plausible fluxes of CO2 from the northern polar cap. The thermal structure at southern latitudes during this storm is satisfactorily produced, but a major discrepancy exists between observations and predictions of the temperature structure at middle northern latitudes. By comparing these results with those from previous inviscid models of the zonal mean circulation on Mars, we suggest v > 107cm2sec−1 at heights above 30 km and v ⪡ 107cm2sec−1 at lower altitudes may yield a meridional circulation which produces the dynamical warming necessary to account for the observed thermal structure at 0.6 mbar at all latitudes. For late southern summer when the dust content of the atmosphere has decreased to levels characteristic of much of the Martian year, the lack of dynamical warming of the winter pole implies v ≤ 106cm2sec−1. In addition, the predicted surface wind azimuths at this season agree well with the observed azimuths of Type I(d) dust streaks, which are observed to form at this season. The observed latitudinal concentration of the streaks is not explained by the model and may require additional processes which have not been included.  相似文献   

8.
The secular variation of the thermal structure of the Martian atmosphere during the dissipation phase of the 1971 dust storm is examined, using temperatures obtained by the infrared spectroscopy investigation on Mariner 9. For the latitude range ?20° to ?30°, the mean temperature at the 2mbar level is found to decrease from approximately 220 K in mid-December 1971 to about 190 K by June 1972 while for the 0.3mbar level a decrease from 203 K to 160 K is observed. Over the same period, the amplitude of the diurnal temperature wave also decreased. Assuming a simplified radiative heating model, the dust optical depth is found to decrease approximately exponentially with an e-folding time of about 60 days at both the 0.3 and 2mbar levels. Stokes-Cunningham settling alone cannot account for this behavior. Sedimentation models which include both gravitational settling and vertical mixing are developed in an effort to explain the time evolution of the dust. Within the framework of a model which assumes an effective vertical diffusivity K independent of height, a mean dust particle diameter of ~2 μm is inferred. To provide the necessary vertical mixing, K ? 107 cm2sec?1 is required in the lower atmosphere.  相似文献   

9.
Dust is a major environmental factor on the surface and in the atmosphere of Mars. Knowing the electrical charge state of this dust would be of both scientific interest and important for the safety of instruments on the Martian surface. In this study the first measurements have been performed of dust electrification using suspended Mars analogue material. This has been achieved by attracting suspended dust onto electrodes placed inside a Mars simulation wind tunnel. The Mars analogue used was from Salten Skov in Denmark, this contained a high concentration of ferric oxide precipitate. Once suspended, this dust was found to consist of almost equal quantities of negatively (46±6%) and positively (44±15%) charged grains.These grains were estimated to typically carry a net charge of around 105e, this is sufficient to dominate the processes of adhesion and cohesion of this suspended dust. Evidence is presented for electrostatic aggregation of the dust while in suspension. Development of a simple instrument for measuring electrical charging of the suspended dust on Mars will be discussed.  相似文献   

10.
M. Kocifaj  J. Kla?ka 《Icarus》2011,211(1):832-838
Temperature gradients in dust beds embedded in a low pressure gaseous environment induce a lift of particles under certain conditions. This effect can erode planetesimals and enables entrainment of dust into the martian atmosphere. Here, we consider a numerical model to calculate the temperature profile in a dust bed which is subject to illumination. We consider the situation when the illumination is switched on and heats the dust bed’s surface and when it is switched off again after a certain time. The calculations focus on the heat transfer by infrared radiation within the dust layer. We find that radiative transfer within the dust bed modifies the absolute temperatures and temperature gradients significantly. This is important for effects which are sensitive to absolute temperatures, i.e. ice sublimation or melting of solids. For low thermal conductivity dust beds of 0.001 W m−1 K−1 it determines the temperature structure of the dust. For higher thermal conductivities the modifications are moderate with respect to dust eruptions as the order of magnitude of temperature gradients stays the same.  相似文献   

11.
A total of 205 dust devils were detected in 23 High Resolution Stereo Camera (HRSC) images taken between January 2004 and July 2006 with the ESA Mars Express orbiter, in which average dust devil heights were ∼660 m and average diameters were ∼230 m. For the first time, dust devil velocities were directly measured from orbit, and range from 1 to 59 m/s. The observed dust devil directions of motion are consistent with data derived from a General Circulation Model (GCM). In some respects HRSC dust devil properties agree favorably with data from the NASA Mars Exploration Rover Spirit dust devil analyses. The spatial distribution of the active dust devils detected by HRSC supports the conjecture that the ascending branch of the Hadley circulation is responsible for the increase in dust devil activity, especially observed during southern summer between 50° and 60° S latitude. Combining the dust-lifting rate of 19 kg/km2/sol derived from the Spirit observations with the fewer in number but larger in size dust devils from various other locations observed by HRSC, we suggest that dust devils make a significant contribution to the dust entrainment into the atmosphere and to the martian dust cycle.  相似文献   

12.
We have performed the first observation of the CO(3-2) spectral line in the atmosphere of Saturn with the James Clerk Maxwell Telescope. We have used a transport model of the atmosphere of Saturn to constrain the origin of the observed CO. The CO line is best-fit when the CO is located at pressures less than (15±2) mbar with a mixing ratio of (2.5±0.6)×10-8 implying an external origin. By modeling the transport in Saturn’s atmosphere, we find that a cometary impact origin with an impact 200-350 years ago is more likely than continuous deposition by interplanetary dust particles (IDP) or local sources (rings/satellites). This result would confirm that comet impacts are relatively frequent and efficient providers of CO to the atmospheres of the outer planets. However, a diffuse and/or local source cannot be rejected, because we did not account for photochemistry of oxygen compounds. Finally, we have derived an upper limit of ∼1×10-9 on the tropospheric CO mixing ratio.  相似文献   

13.
The Aeolian Dust Experiment on Climate Impact (ADEC) was initiated in April 2000 as a joint five-year Japan–China project. The goal was to understand the impact of aeolian dust on climate via radiative forcing (RF). Field experiments and numerical simulations were conducted from the source regions in northwestern China to the downwind region in Japan in order to understand wind erosion processes temporal and spatial distribution of dust during their long-range transportation chemical, physical, and optical properties of dust and the direct effect of radiative forcing due to dust. For this, three intensive observation periods (IOP) were conducted from April 2002 to April 2004.The in situ and network observation results are summarized as follows: (1) In situ observations of the wind erosion process revealed that the vertical profile of moving sand has a clear size dependency with height and saltation flux and that threshold wind velocity is dependent on soil moisture. Results also demonstrated that saltation flux is strongly dependent on the parent soil size distribution of the desert surface. (2) Both lidar observations and model simulations revealed a multiple dust layer in East Asia. A numerical simulation of a chemical transport model, CFORS, illustrated the elevated dust layer from the Taklimakan Desert and the lower dust layer from the Gobi Desert. The global-scale dust model, MASINGAR, also simulated the dust layer in the middle to upper free troposphere in East Asia, which originated from North Africa and the Middle East during a dust storm in March 2003. Raman lidar observations at Tsukuba, Japan, found the ice cloud associated with the dust layer at an altitude of 6 to 9 km. Analysis from lidar and the radio-sonde observation suggested that the Asian dust acted as ice nuclei at the ice-saturated region. These results suggest the importance of dust's climate impact via the indirect effect of radiative forcing due to the activation of dust into ice nuclei. (3) Studies on the aerosol concentration indicated that size distributions of aerosols in downwind regions have bimodal peaks. One peak was in the submicron range and the other in the supermicron range. The main soluble components of the supermicron peak were Na+, Ca2+, NO3, and Cl. In the downwind region in Japan, the dust, sea salt, and a mixture of the two were found to be dominant in coarse particles in the mixed boundary layer. (4) Observation of the optical properties of dust by sky-radiometer, particle shoot absorption photometer (PSAP), and Nephelometer indicated that unpolluted dust at source region has a weaker absorption than originally believed.A sensitivity experiment of direct RF by dust indicated that single scattering albedo is the most important of the optical properties of dust and that the sensitivity of instantaneous RF in the shortwave region at the top of the atmosphere to the refractive index strongly depends on surface albedo. A global scale dust model, MASINGAR, was used for evaluation of direct RF due to dust. The results indicated the global mean RF at the top and the bottom of the atmosphere were − 0.46 and − 2.13 W m− 2 with cloud and were almost half of the RF with cloud-free condition.  相似文献   

14.
The LIDAR instrument operating from the surface of Mars on the Phoenix Mission measured vertical profiles of atmospheric dust and water ice clouds at temperatures around −65 °C. An equivalent lidar system was utilized for measurements in the atmosphere of Earth where dust and cloud conditions are similar to Mars. Coordinated aircraft in situ sampling provided a verification of lidar measurement and analysis methods and also insight for interpretation of lidar derived optical parameters in terms of the dust and cloud microphysical properties. It was found that the vertical distribution of airborne dust above the Australian desert is quite similar to what is observed in the planetary boundary layer above Mars. Comparison with the in situ sampling is used to demonstrate how the lidar derived optical extinction coefficient is related to the dust particle size distribution. The lidar measurement placed a constraint on the model size distribution that has been used for Mars. Airborne lidar measurements were also conducted to study cirrus clouds that form in the Earth’s atmosphere at a similar temperature and humidity as the clouds observed with the lidar on Mars. Comparison with the in situ sampling provides a method to derive the cloud ice water content (IWC) from the Mars lidar measurements.  相似文献   

15.
M. Podolak  R.E. Danielson 《Icarus》1977,30(3):479-492
The scattering and absorption properties of Axel dust were investigated by means of Mie theory. We find that a flat distribution of particle radii between 0 and 0.1 μm, and an imaginary part of the index of refraction which varies as λ?2.5 produce a good fit to the variation of Titan's geometric albedo with wavelength (λ) provided that τext, the extinction optical depth of Titan's atmosphere at 5000 Å, is about 10. The real part of the complex index is taken to be 2.0. The model assumes that the mixing ratio of Axel dust to gas is uniform above the surface of Titan. The same set of physical properties for Axel dust also produces a good fit to Saturn's albedo if τext = 0.7 at 5000 Å. To match the increase in albedo shortward of 3500 Å, a clear layer (containing about 7 km-am H2) is required above the Axel dust. Such a layer is also required to explain the limb brightening in the ultraviolet. These models can be used to analyze the observed equivalent widths of the visible methane bands. The analysis yields an abundance of the order of 1000 m-am CH4 in Titan's atmosphere. The derived CH4/H2 mixing ratio for Saturn is about 3.5 × 10?3 or an enhancement of about 5 over the solar ratio.  相似文献   

16.
The strong 14C increase in the year AD 774/5 detected in one German and two Japanese trees was recently suggested to have been caused by an impact of a comet onto Earth and a deposition of large amounts of 14C into the atmosphere (Liu et al. 2014). The authors supported their claim using a report of a historic Chinese observation of a comet ostensibly colliding with Earth's atmosphere in AD 773 January. We show here that the Chinese text presented by those authors is not an original historic text, but that it is comprised of several different sources. Moreover, the translation presented in Liu et al. is misleading and inaccurate. We give the exact Chinese wordings and our English translations. According to the original sources, the Chinese observed a comet in mid January 773, but they report neither a collision nor a large coma, just a long tail. Also, there is no report in any of the source texts about “dust rain in the daytime” as claimed by Liu et al. (2014), but simply a normal dust storm. Ho (1962) reports sightings of this comet in China on AD 773 Jan 15 and/or 17 and in Japan on AD 773 Jan 20 (Ho 1962). At the relevant historic time, the Chinese held that comets were produced within the Earth's atmosphere, so that it would have been impossible for them to report a “collision” of a comet with Earth's atmosphere. The translation and conclusions made by Liu et al. (2014) are not supported by the historical record. Therefore, postulating a sudden increase in 14C in corals off the Chinese coast precisely in mid January 773 (Liu et al. 2014) is not justified given just the 230Th dating for AD 783 ± 14. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We present an analysis of the observations of the Deep Impact event performed by the OSIRIS narrow angle camera aboard the Rosetta spacecraft over two weeks, in an effort to characterize the cometary dust grains ejected from the nucleus of Comet 9P/Tempel 1. We adopt a Monte Carlo approach to generate calibrated synthetic images, and a linear combination of them is fitted to the calibrated images so as to determine the physical parameters of the dust cloud. Our model considers spherical olivine particles with a density of 3780 kg m−3. It incorporates constraints on the direction of the cone of emission coming from additional images obtained at Pic du Midi observatory, and constraints on the dust terminal velocities coming from the physics of the impact. We find that the slope of the differential dust size distribution of grains with radii <20 μm (β>0.008) is 3.1±0.3, a value typical of cometary dust tails. This shows that there is no evidence in our data for an enhancement in sub-micron particles in the ejecta compared to the typical dust distribution of active comets. We estimate the mass of particles with radii <1.4 μm (β>0.14) to be 1.5±0.2×105 kg. These particles represent more than 80% of the cross-section of the observed dust cloud. The mass carried by larger particles depends whether the gas significantly increases the kinetic energy of the grains in the inner coma; it lies in the range 1-14×106 kg for particles with radii <100 μm (β>0.002). We obtain the distribution of terminal velocities reached by the dust after the dust-gas interaction which is very well constrained between 10 and 600 m s−1. It is characterized by Gaussian with a maximum at about 190 m s−1 and a width at half maximum of 150 m s−1.  相似文献   

18.
We have considered the new process of atmospheric losses - “sputtering” under bombardment by interplanetary dust. It is demonstrated that “sputtering” due to collisions with the interplanetary dust is an effective way of atmospheric gas loss (10–4–10–3 of the dust particles' accreting mass) and that it changes the composition of the atmospheric gases. In calculations we have taken that the dust particles collide elastically with the atoms and molecules of the atmosphere. Estimation of the effects of inelastic collisions was also considered. As a result of these collisions a part of the atmospheric atoms and molecules will have “upward” velocity and enough energy to escape. It was considered that escaping atoms can collide with the atoms of the “main” gas of the upper atmosphere. The atmospheric gas composition is assumed to be just as in the modern Martian atmosphere - the “main” gases in the upper atmosphere were taken to be O and CO2. In our computations we pay particular attention to the abundance of noble gases in planetary atmospheres since these gases are very important for theories of atmospheric origin. We computed that under “sputtering” by the interplanetary dust, atmospheres were enriched by the “heavy” elements and isotopes in the wide range of the upper atmospheric parameters O/CO2, T/g (O/CO2– on the level of homosphere;T is temperature of the exosphere,g is gravitational acceleration). However the loss efficiency for “heavy” gases is relatively high compared to other known gas loss processes. In the case of noble gases for the specific parameters of the upper atmosphere (small T/g ratio; high O/CO2 on the level of homosphere) we have got the unique result: despite the diffusion separation in the upper atmosphere the loss efficiency of Xe > Kr > Ar. The effect of “sputtering” of the planetary atmospheres was strongest during the early stages of the planetary evolution - when the rate of the dust accretion was intrinsically higher than now because of collisions of planetesimals. In light of the new escape process, the main peculiarities of the noble gases abundance in the planetary atmospheres could be explained. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Impact-generated dust clouds around airless bodies have been observed or suggested to be present throughout the solar system, including around the Martian, Galilean and Saturnian satellites. Simulations have assessed Pluto and Charon as sources of a possible dust cloud or torus and found that such a cloud would be dominated by Charon-produced ejecta and would have an optical depth of τ≈10−11. These simulations were conducted before the discovery of two additional, small satellites of Pluto, Nix and Hydra. These small moons may yield impact-generated dust in excess of their larger counterparts due to their lower escape velocities, despite their smaller cross sections. In this paper, we extend a previous model of the Pluto–Charon dust cloud to include Nix and Hydra, both as sinks for Pluto- and Charon-generated dust and as sources of impact-generated dust. We find that Nix- and Hydra-generated dust grains outlive Pluto and Charon dust grains significantly and are the dominant contributors of dust in the Pluto–Charon system. Furthermore, we estimate the net geometric optical depth of grains between 0.1 and to be on the order of 10−7.  相似文献   

20.
The extended period of mass extinctions around the K/T boundary correlating with extraterrestrial amino acids in the sediment record constitutes strong evidence of a cometary cause. The input of extraterrestrial matter over 105 yr supports the hypothesis of a giant comet, fragmented into subcomets on close encounter with Jupiter, and subsequently perturbed into Earth-crossing orbits. Copious amounts of dust were emitted via this and possibly successive fragmenting encounters, and via normal cometary evaporation. The dynamics of dust from the disintegrating comet fragments favours retention in Earth-crossing orbits of the sub-micron fraction of organic composition. The shroud of dust accreted in the Earth's upper atmosphere varied with time and imposed climatic stresses that caused species extinctions over 105 yr. While the iridium peak in the sediments coincides with the Chicxulub crater impactor, other iridium detail suggests that some of the impactor material was reinjected into space and in part re-accreted by Earth from the interplanetary orbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号