首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 16 毫秒
1.
Empirical orthogonal function (EOF) analysis reveals a co-variability of Sea surface temperatures (SSTs) in the Southern Hemisphere (0°-60°S). In the South Indian and Atlantic Oceans, there is a subtropical dipole pattern slanted in the southwest- north-east direction. In the South Pacific Ocean, a meridional tripole structure emerges, whose middle pole co-varies with the dipoles in the South Indian and Atlantic Oceans and is used in this study to track subtropical Pacific variability. The South Indian and Atlantic Ocean dipoles and the subtropical Pacific variability are phase-locked in austral summer. On the inter-decadal time scales, the dipoles in the South Indian and Atlantic Oceans weaken in amplitude after 1979/1980. No such weakening is found in the subtropical South Pacific Ocean. Interestingly, despite the reduced amplitude, the correlation of the Indian Ocean and Atlantic dipoles with El Nio and Southern Oscillation (ENSO) are enhanced after 1979/1980. The same increase in correlation is found for subtropical South Pacific variability after 1979/1980. These inter-decadal modulations imply that the Southern Hemisphere participates in part of the climate shift in the late 1970s. The correlation between Southern Hemisphere SST and ENSO reduces after 2000.  相似文献   

2.
The thermal condition anomaly of the western Pacific warm pool and its zonal displacement have very important influences on climate change in East Asia and even the whole world. However, the impact of the zonal wind anomaly over the Pacific Ocean on zonal displacement of the warm pool has not yet been analyzed based on long-term record. Therefore, it is important to study the zonal displacement of the warm pool and its response to the zonal wind anomaly over the equatorial Pacific Ocean. Based on the NCDC monthly averaged SST (sea surface temperature) data in 2°×2° grid in the Pacific Ocean from 1950 to 2000, and the NCEP/NCAR global monthly averaged 850 hPa zonal wind data from 1949 to 2000, the relationships between zonal displacements of the western Pacific warm pool and zonal wind anomalies over the tropical Pacific Ocean are analyzed in this paper. The results show that the zonal displacements are closely related to the zonal wind anomalies over the western, central and eastern equatorial Pacific Ocean. Composite analysis indicates that during ENSO events, the warm pool displacement was trigged by the zonal wind anomalies over the western equatorial Pacific Ocean in early stage and the process proceeded under the zonal wind anomalies over the central and eastern equatorial Pacific Ocean unless the wind direction changes. Therefore, in addition to the zonal wind anomaly over the western Pacific, the zonal wind anomalies over the central and eastern Pacific Ocean should be considered also in investigation the dynamical mechanisms of the zonal displacement of the warm pool.  相似文献   

3.
We analyzed interdecadal variability of the South China Sea monsoon and its relationship with latent heat flux in the Pacific Ocean, using NCEP wind field and OAFlux heat flux datasets. Results indicate that South China Sea monsoon intensity had an obvious interdecadal variation with a decreasing trend. Variability of the monsoon was significantly correlated with latent heat flux in the Kuroshio area and tropical Pacific Ocean. Variability of latent heat flux in the Kuroshio area had an interdecadal increasing trend, while that in the tropical Pacific Ocean had an interdecadal decreasing trend. Latent heat flux variability in these two sea areas was used to establish a latent heat flux index, which had positive correlation with variability of the South China Sea monsoon. When the latent heat flux was 18 months ahead of the South China Sea monsoon, the correlation coefficient maximized at 0.58 (N=612), with a 99.9% significance level of 0.15. Thus, it is suggested that latent heat flux variability in the two areas contributes greatly to interdecadal variability of the South China Sea monsoon.  相似文献   

4.
Feng  Junqiao  Wang  Fujun  Wang  Qingye  Hu  Dunxin 《中国海洋湖沼学报》2020,38(4):1108-1122
We investigated the intraseasonal variability of equatorial Pacific subsurface temperature and its relationship with El Nino-Southern Oscillation(ENSO) using Self-Organizing Maps(SOM) analysis.Variation in intraseasonal subsurface temperature is mainly found along the thermocline.The SOM patterns concentrate in basin-wide seesaw or sandwich structures along an east-west axis.Both the seesaw and sandwich SOM patterns oscillate with periods of 55 to 90 days,with the sequence of them showing features of equatorial intraseasonal Kelvin wave,and have marked interannual variations in their occurrence frequencies.Further examination shows that the interannual variability of the SOM patterns is closely related to ENSO;and maxima in composite interannual variability of the SOM patterns are located in the central Pacific during CP El Nino and in the eastern Pacific during EP El Nino.The se results imply that some of the ENSO forcing is manife sted through changes in the occurrence frequency of intraseasonal patterns,in which the change of the intraseasonal Kelvin wave plays an important role.  相似文献   

5.
In this study, three high frequent occurrence regions of tropical cyclones(TCs), i.e., the northern South China Sea(the region S), the south Philippine Sea(the region P) and the region east of Taiwan Island(the region E), are defined with frequency of TC's occurrence at each grid for a 45-year period(1965–2009), where the frequency of occurrence(FO) of TCs is triple the mean value of the whole western North Pacific. Over the region S, there are decreasing trends in the FO of TCs, the number of TCs' tracks going though this region and the number of TCs' genesis in this region. Over the region P, the FO and tracks demonstrate decadal variation with periods of 10–12 year, while over the region E, a significant 4–5 years' oscillation appears in both FO and tracks. It is demonstrated that the differences of TCs' variation in these three different regions are mainly caused by the variation of the Western Pacific Subtropical High(WPSH) at different time scales. The westward shift of WPSH is responsible for the northwesterly anomaly over the region S which inhibits westward TC movement into the region S. On the decadal timescale, the WPSH stretches northwestward because of the anomalous anticyclone over the northwestern part of the region P, and steers more TCs reaching the region P in the greater FO years of the region P. The retreating of the WPSH on the interannual time scale is the main reason for the FO's oscillation over the region E.  相似文献   

6.
Time series of sea surface temperature (SST),wind speed and significant wave height (SWH) from meteorologicalbuoys of the National Data Buoy Center (NDBC) are useful for studying the interannual variability and trend of these quantities at the buoy areas.The measurements from 4 buoys (B51001,B51002,B51003 and B51004) in the Hawaii area are used to study theresponses of the quantities to EI Nino and Southern Oscillation (ENSO).Long-term averages of these data reflect precise seasonaland climatological characteristics of SST,wind speed and SWH around the Hawaii area.Buoy observations from B51001 suggest asignificant warming trend which is,however,not very clear from the other three buoys.Compared with the variability of SST andSWH,the wind speeds from the buoy observations show an increasing trend.The impacts of El Nifio on SST and wind waves arealso shown.Sea level data observed by altimeter during October 1992 to September 2006 are analyzed to investigate the variabilityof sea level in the Hawaii area.The results also show an increasing trend in sea level anomaly (SLA).The low-passed SLA in theHawaii area is consistent with the inverse phase of the low-passed Sol (Southern Oscillation Index).Compared with the low-passedSOl and PDO (Pacific Decadal Oscillation),the low-passed PNA (Pacific-North America Index) has a better correlation with thelow-passed SLA in the Hawaii area.  相似文献   

7.
Changes in sea surface temperature(SST), seawater oxygen isotope(δ 18 O sw), and local salinity proxy(δ 18 O sw-ss) in the past 155 ka were studied using a sediment core(MD06-3052) from the northern edge of the western Pacifi c Warm Pool(WPWP), within the fl ow path of the bifurcation of the North Equatorial Current. Our records reveal a lead-lag relationship between paired Mg/Ca-SST and δ 18 O during Termination II and the last interglacial period. Similarity in SST between our site and the Antarctic temperature proxy and in CO 2 profi le showed a close connection between the WPWP and the Antarctic. Values of δ 18 O sw exhibited very similar variations to those of mean ocean δ 18 O sw, owing to the past sea-level changes on glacial-interglacial timescale. Calculated values of δ 18 O sw-ss refl ect a more saline condition during high local summer insolation(SI) periods. Such correspondence between δ 18 O sw-ss and local SI in the WPWP may refl ect complex interaction between ENSO and monsoon, which was stimulated by changes in solar irradiance and their infl uence on the local hydrologic cycle. This then caused a striking reorganization of atmospheric circulation over the WPWP.  相似文献   

8.
利用GRACE时变重力场模型反演2009-07~2017-06期间亚马孙平原的水储量变化,在移除趋势和季节性周期信号后,计算得到其与ENSO指数之间具有较强的相关关系和一定的时延性,并从季节层面进行分析得到ENSO对亚马孙平原旱、雨两季的不同影响,表现为旱季受到ENSO显著影响而雨季受到的影响则较小。最后,结合水文数据分析指出,ENSO会通过影响降雨量进而影响相应区域的水储量变化,且该现象在流域内两次极端旱灾中有较为突出的表现。  相似文献   

9.
A global atmospheric general circulation model (L9R15 AGCMs) forced by COADS SST was integrated from 1945 to 1993. Interannual and interdecadal variability of the simulated surface wind over the tropical Pacific was analyzed and shown to agree vey well with observation. Simulation of surface wind over the central-western equatorial Pacific was more successful than that over the eastern Pacific. Zonal propagating feature of interannual variability of the tropical Pacific wind anomalies and its decadal difference were also simulated successfully. The close agreement between simulation and observation on the existence of obvious interdecadal variability of tropical Pacific surface wind attested to the high simulation capability of AGCM.  相似文献   

10.
11.
The temporal variations in the frequency of tropical cyclones (TCs) traversing the Taiwan and Hainan Islands (TH islands), were analyzed using a best-track TC dataset from the Joint Typhoon Warning Center for the period 1945-2007. Results show that the oscillations were interannual and interdecadal on the timescales of 2-8 and 8-12 years, respectively. It is also shown that the number of TCs formed in the western North Pacific basin (WNP) and of those traversing the TH islands varied intraseasonally. These results also held for typhoons traversing the TH islands, although the oscillations were less apparent. This study identified interrelationships between the frequency of TCs making landfall on the TH islands and the East Asia summer monsoon (EASM), the South Asia summer monsoon (SASM), and the South China Sea summer monsoon (SCSSM). The SCSSM significantly influenced the number of TCs traversing Hainan Island, but had little influence on the number of TCs traversing Taiwan Island. By contrast, the SASM influenced the numbers of TCs traversing both of the TH islands, shown by correlation coefficients of 0.41 for Taiwan Island and -0.25 for Hainan Island. In addition, the frequency of TC landfall on Taiwan Island increased during years of enhanced EASM, as indicated by a correlation coefficient of 0.4.  相似文献   

12.
By taking into consideration the effects of ocean surface wave-induced Stokes drift velocity U,w and current velocityU,c on the drag coefficient,the spatial distributions of drag coefficient and wind stress in 2004 are computed over the tropical andnorthern Pacific using an empirical drag coefficient parameterization formula based on wave steepness and wind speed.The globalocean current field is generated from the Hybrid Coordinate Ocean Model (HYCOM) and the wave data are generated from Wave-watch Ⅲ (WW3).The spatial variability of the drag coefficient and wind stress is analyzed.Preliminary results indicate that theocean surface Stokes drift velocity and current velocity exert an important influence on the wind stress.The results also show thatconsideration of the effects of the ocean surface Stokes drift velocity and current velocity on the wind stress can significantly im-prove the modeling of ocean circulation and air-sea interaction processes.  相似文献   

13.
<正>柔鱼(Ommastrephes bartramii)广泛分布在北太平洋,20世纪70年代初首先由日本鱿钓船开发,我国大陆于1993年开始利用该资源,1994年进行较大规模地商业性生产。目前北太平洋鱿钓渔业已成为我国远洋渔业的支柱[1]。据估计,历史上北太平洋柔  相似文献   

14.
利用手持式超站仪配合实验形数法测定林分特征参数的原理与方法,可以迅速精确获得树木树干的胸径、树高、材积、角尺度、混交度、大小比数、林分胸高断面积、林分平均高、林分平均株数、蓄积量和生长量等数据。文章提出了观测五棵树构成样地的森林计测方法,通过实验研究表明,此方法比传统的森林调查技术更加精确和高效。  相似文献   

15.
16.
In this paper, by using ocean surface temperature data (COADS), the study is made of the characteristics of the monthly and annual changes of the SST in the tropical western Pacific and Indian Oceans, which have important influences on the climate change of the whole globe and the relation between ENSO(E1 Nino-Southern Oscillation) and the Antarctic ice area is also discussed. The result indicates that in the tropical western Pacific and the Indian Oceans the change of Sea Surface Temperture (SST) is conspicuous both monthly and armaully, and shows different change tendency between them. This result may be due to different relation in the vibration period of SST between the two Oceans. The better corresponding relationship is obvious in the annual change of SST in the tropical Indian Ocean with the occurrence El Nino and LaNlra. The change of the SST in the tropical western Pacific and the tropical Indian Oceans has a close relation to the Antarctic ice area, especially to the ice areas in the eastern-south Pole and Ross Sea, and its notable correlative relationship appears in 16 months when the SST of the tropical western Pacific and the Indian Oceans lag back the Antarctic ice area.  相似文献   

17.
1Introduction Activities of extracellular enzymes can serve as theindicators of organic matter content.Enzyme assayinghas been used in the analyses of dissolved organic ma-terials in aquatic environments(Chrost,1991),massloss of plant litter in terrestrial systems(Sinsabaughet al.,1992;Sinsabaugh et al.,1994),processing ofpaniculate and dissolved organic carbon(POC,DOC)in streams(Sinsabaugh and Findlay,1995;Findlayet al.,1998),and processing of particulate organicmatter(POM)in wetlands(J…  相似文献   

18.
In order to understand the large-scale spatial distribution characteristics of picoplankton,nanophytoplankton and virio-plankton and their relationship with environmental variables in coastal and offshore waters,flow cytometry(FCM) was used to ana-lyze microbial abundance of samples collected in summer from four depths at 36 stations in the North Yellow Sea(NYS).The data revealed spatial heterogeneity in microbial populations in the offshore and near-shore waters of the NYS during the summer.For the surface layer,picoeukaryotes were abundant in the near-shore waters,Synechococcus was abundant in the offshore areas,and bacte-rial and viral abundances were high in the near-shore waters around the Liaodong peninsula.In the near-shore waters,no significant vertical variation of picophytoplankton(0.2-2μm) abundance was found.However,the nanophytoplankton abundance was higher in the upper layers(from the surface to 10 m depth) than in the bottom layer.For the offshore waters,both pico-and nanophytoplankton(2-20μm) abundance decreased sharply with depth in the North Yellow Sea Cold Water Mass(NYSCWM).But,for the vertical dis-tribution of virus and bacteria abundance,no significant variation was observed in both near-shore and offshore waters.Autotrophic microbes were more sensitive to environmental change than heterotrophic microbes and viruses.Viruses showed a positive correla-tion with bacterial abundance,suggesting that the bacteriophage might be prominent for virioplankton(about 0.45μm) in summer in the NYS and that viral abundance might play an important role in microbial loop functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号