首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
自然控制论   总被引:20,自引:7,他引:13  
{{@ convertAbstractHtml(article.abstractinfoCn, "cn")}}   {{if article.graphicalAbstractinfoCn && article.graphicalAbstractinfoCn != ""}}{{@ article.graphicalAbstractinfoCn}}{{/if}}  相似文献   

2.
欧亚雪盖准2年振荡对中国降水的影响   总被引:5,自引:0,他引:5  
{{@ convertAbstractHtml(article.abstractinfoCn, "cn")}}   {{if article.graphicalAbstractinfoCn && article.graphicalAbstractinfoCn != ""}}{{@ article.graphicalAbstractinfoCn}}{{/if}}  相似文献   

3.
{{@ convertAbstractHtml(article.abstractinfoCn, "cn")}}   {{if article.graphicalAbstractinfoCn && article.graphicalAbstractinfoCn != ""}}{{@ article.graphicalAbstractinfoCn}}{{/if}}  相似文献   

4.
三门峡库尾的泥沙淤积及其解决途径的建议   总被引:2,自引:0,他引:2  
{{@ convertAbstractHtml(article.abstractinfoCn, "cn")}}   {{if article.graphicalAbstractinfoCn && article.graphicalAbstractinfoCn != ""}}{{@ article.graphicalAbstractinfoCn}}{{/if}}  相似文献   

5.
{{@ convertAbstractHtml(article.abstractinfoCn, "cn")}}   {{if article.graphicalAbstractinfoCn && article.graphicalAbstractinfoCn != ""}}{{@ article.graphicalAbstractinfoCn}}{{/if}}  相似文献   

6.
遥感在1998年洪水监测中的作用   总被引:9,自引:0,他引:9  
{{@ convertAbstractHtml(article.abstractinfoCn, "cn")}}   {{if article.graphicalAbstractinfoCn && article.graphicalAbstractinfoCn != ""}}{{@ article.graphicalAbstractinfoCn}}{{/if}}  相似文献   

7.
{{@ convertAbstractHtml(article.abstractinfoCn, "cn")}}   {{if article.graphicalAbstractinfoCn && article.graphicalAbstractinfoCn != ""}}{{@ article.graphicalAbstractinfoCn}}{{/if}}  相似文献   

8.
{{@ convertAbstractHtml(article.abstractinfoCn, "cn")}}   {{if article.graphicalAbstractinfoCn && article.graphicalAbstractinfoCn != ""}}{{@ article.graphicalAbstractinfoCn}}{{/if}}  相似文献   

9.
{{@ convertAbstractHtml(article.abstractinfoCn, "cn")}}   {{if article.graphicalAbstractinfoCn && article.graphicalAbstractinfoCn != ""}}{{@ article.graphicalAbstractinfoCn}}{{/if}}  相似文献   

10.
序言     
{{@ convertAbstractHtml(article.abstractinfoCn, "cn")}}   {{if article.graphicalAbstractinfoCn && article.graphicalAbstractinfoCn != ""}}{{@ article.graphicalAbstractinfoCn}}{{/if}}  相似文献   

11.
气温变化对天津大北乡农业生产的影响及对策   总被引:2,自引:0,他引:2       下载免费PDF全文
本文根据系统科学的原理,采用模糊数学、统计学和运筹学等方法分析、预测了气温变化对天津大北乡农业生产的影响情况,并提出了1988年气温增减变化1℃情况下大北乡农、林、牧、渔业结构的最优方案。结果表明,当气温增加1℃时,一年二熟制歉年方案或二年三熟制歉年方案较好;当气温降低1℃时,一年一熟制歉年方案较其它方案为好。  相似文献   

12.
Multiple cropping, defined as harvesting more than once a year, is a widespread land management strategy in tropical and subtropical agriculture. It is a way of intensifying agricultural production and diversifying the crop mix for economic and environmental benefits. Here we present the first global gridded data set of multiple cropping systems and quantify the physical area of more than 200 systems, the global multiple cropping area and the potential for increasing cropping intensity. We use national and sub-national data on monthly crop-specific growing areas around the year 2000 (1998–2002) for 26 crop groups, global cropland extent and crop harvested areas to identify sequential cropping systems of two or three crops with non-overlapping growing seasons. We find multiple cropping systems on 135 million hectares (12% of global cropland) with 85 million hectares in irrigated agriculture. 34%, 13% and 10% of the rice, wheat and maize area, respectively are under multiple cropping, demonstrating the importance of such cropping systems for cereal production. Harvesting currently single cropped areas a second time could increase global harvested areas by 87–395 million hectares, which is about 45% lower than previous estimates. Some scenarios of intensification indicate that it could be enough land to avoid expanding physical cropland into other land uses but attainable intensification will depend on the local context and the crop yields attainable in the second cycle and its related environmental costs.  相似文献   

13.
Climate variability and change affects individuals and societies. Within agricultural systems, seasonal climate forecasting can increase preparedness and lead to better social, economic and environmental outcomes. However, climate forecasting is not the panacea to all our problems in agriculture. Instead, it is one of many risk management tools that sometimes play an important role in decision-making. Understanding when, where and how to use this tool is a complex and multi-dimensional problem. To do this effectively, we suggest a participatory, cross-disciplinary research approach that brings together institutions (partnerships), disciplines (e.g., climate science, agricultural systems science, rural sociology and many other disciplines) and people (scientist, policy makers and direct beneficiaries) as equal partners to reap the benefits from climate knowledge. Climate science can provide insights into climatic processes, agricultural systems science can translate these insights into management options and rural sociology can help determine the options that are most feasible or desirable from a socio-economic perspective. Any scientific breakthroughs in climate forecasting capabilities are much more likely to have an immediate and positive impact if they are conducted and delivered within such a framework. While knowledge and understanding of the socio-economic circumstances is important and must be taken into account, the general approach of integrated systems science is generic and applicable in developed as well as in developing countries. Examples of decisions aided by simulation output ranges from tactical crop management options, commodity marketing to policy decisions about future land use. We also highlight the need to better understand temporal- and spatial-scale variability and argue that only a probabilistic approach to outcome dissemination should be considered. We demonstrated how knowledge of climatic variability (CV), can lead to better decisions in agriculture, regardless of geographical location and socio-economic conditions.  相似文献   

14.
Study on the Impacts of Climate Change on China's Agriculture   总被引:1,自引:0,他引:1  
This paper measures the economic impacts of climate change on China's agriculture based on the Ricardian model. By using county-level cross-sectional data on agricultural net revenue, climate, and other economic and geographical data for 1275 agriculture dominated counties, we find that under most climate change scenarios both higher temperature and more precipitation would have an overall positive impact on China's agriculture. However, the impacts vary seasonally and regionally. Autumn effect is the most positive, but spring effect is the most negative. Applying the model to five climate scenarios in the year 2050 shows that the East, the Central part, the South, the northern part of the Northeast, and the Plateau would benefit from climate change, but the Southwest, the Northwest and the southern part of the Northeast may be negatively affected. In the North, most scenarios show that they may benefit from climate change. In summary, all of China would benefit from climate change in most scenarios.  相似文献   

15.
摘要:基于1964-2016年乌鲁木齐市米东区日照时数资料,使用线性回归方法,分析乌鲁木齐市北部农区日照时数的时空变化特征,并用偏最小二乘法(PLS)分析日照时数与各气象要素之间的相关性。结果表明:(1)年日照时数平均每10a递减95.5h,1998年后日照时数急剧减少,连续19a均呈负距平。(2)3-10月日照时数变化不明显,11月至次年2月日照时数显著减少。(3)4—10月大田作物生长季光照条件稳定,冬季设施农业生产季11月至次年3月的日照时数显著减少、寡照日数增多,光照不足严重影响设施农业生产。(4)近53a雾日增加、低能见度发生频率增大、低云量增多、冬季降雪量增加等是造成米东区日照时数剧烈减少的主要气象原因,米东区和主城区相比,局地气候特征更为突出。  相似文献   

16.
Agricultural production and household food security are hypothesized to play a critical role connecting climate change to downstream effects on women’s health, especially in communities dependent on rainfed agriculture. Seasonal variability in agriculture strains food and income resources and makes it a challenging time for households to manage a pregnancy or afford a new child. Yet, there are few direct assessments of the role locally varying agricultural quality plays on women’s health, especially reproductive health. In this paper we build on and integrate ideas from past studies focused on climate change and growing season quality in low-income countries with those on reproductive health to examine how variation in local seasonal agricultural quality relates to childbearing goals and family planning use in three countries in sub-Saharan Africa: Burkina Faso, Kenya, and Uganda. We use rich, spatially referenced data from the Performance Monitoring for Action (PMA) individual surveys with detailed information on childbearing preferences and family planning decisions. Building on recent advances in remote monitoring of seasonal agriculture, we construct multiple vegetation measures capturing different dimensions of growing season conditions across varying time frames. Results for the Kenya sample indicate that if the recent growing season is better a woman is more likely to want a child in the future. In Uganda, when the growing season conditions are better, women prefer to shorten the time until their next birth and are also more likely to discontinue using family planning. Additional analyses reveal the importance of education and birth spacing in moderating these findings. Overall, our findings suggest that, in some settings, women strategically respond to growing season conditions by adjusting fertility aspirations or family planning use. This study also highlights the importance of operationalizing agriculture in nuanced ways that align with women’s lives to better understand how women are impacted by and respond to seasonal climate conditions.  相似文献   

17.
Deforestation, the second largest source of anthropogenic greenhouse gas emissions, is largely driven by expanding forestry and agriculture. However, despite agricultural expansion being increasingly driven by foreign demand, the links between deforestation and foreign demand for agricultural commodities have only been partially mapped. Here we present a pan-tropical quantification of carbon emissions from deforestation associated with the expansion of agriculture and forest plantations, and trace embodied emissions through global supply chains to consumers. We find that in the period 2010–2014, expansion of agriculture and tree plantations into forests across the tropics was associated with net emissions of approximately 2.6 gigatonnes carbon dioxide per year. Cattle and oilseed products account for over half of these emissions. Europe and China are major importers, and for many developed countries, deforestation emissions embodied in imports rival or exceed emissions from domestic agriculture. Depending on the trade model used, 29–39% of deforestation-related emissions were driven by international trade. This is substantially higher than the share of fossil carbon emissions embodied in trade, indicating that efforts to reduce greenhouse gas emissions from land-use change need to consider the role of international demand in driving deforestation. Additionally, we find that deforestation emissions are similar to, or larger than, other emissions in the carbon footprint of key forest-risk commodities. Similarly, deforestation emissions constitute a substantial share (˜15%) of the total carbon footprint of food consumption in EU countries. This highlights the need for consumption-based accounts to include emissions from deforestation, and for the implementation of policy measures that cross these international supply-chains if deforestation emissions are to be effectively reduced.  相似文献   

18.
This paper characterizes droughts in Romania using the approach of both the standardized precipitation index (SPI) and climatic water deficit (WD). The values of the main climatic factors (rainfall, temperature, reference evapotranspiration, etc.) were obtained from 192 weather stations in various regions of Romania. Penman–Monteith reference evapotranspiration (ETo-PM) was used to calculate WD as the difference between precipitation (P) and ETo-PM. SPI was calculated from precipitation values. There is a clear difference between drought and aridity. Drought occurrence determines higher WD values for plains and plateaus and lower climatic excess water (EW) values for high mountains in Romania, depending on the aridity of the specific region considered and drought severity. WD calculated as mean values for both normal conditions and, for all locations studied, various types of drought was correlated with mean annual precipitation and temperature, respectively. The combined approach of WD and SPI was mainly carried out for periods of 1 year, but such studies could also be done for shorter periods like months, quarters, or growing season. The most arid regions did not necessarily coincide with areas of the most severe drought, as there were no correlations between WD and SPI and no altitude-based SPI zones around the Carpathian Mountains, as is the case for other climate characteristics, soils and vegetation. Water resource problems arise where both SPI values characterize extremely droughty periods and WD values are greatly below ?200 mm/year. This combined use of SPI and WD characterizes the dryness of a region better than one factor alone and should be used for better management of water in agriculture in Romania and also other countries with similar climate characteristics.  相似文献   

19.
The International Workshop on Reducing Vulnerability of Agriculture and Forestry to Climate Variability and Climate Change held in Ljubljana, Solvenia, from 7 to 9 October 2002 addressed a range of important issues relating to climate variability, climate change, agriculture, and forestry including the state of agriculture and forestry and agrometeological information, and potential adaptation strategies for agriculture and forestry to changing climate conditions and other pressures. There is evidence that global warming over the last millennium has already resulted in increased global average annual temperature and changes in rainfall, with the 1990s being likely the warmest decade in the Northern Hemisphere at least. During the past century, changes in temperature patterns have, for example, had a direct impact on the number of frost days and the length of growing seasons with significant implications for agriculture and forestry. Land cover changes, changes in global ocean circulation and sea surface temperature patterns, and changes in the composition of the global atmosphere are leading to changes in rainfall. These changes may be more pronounced in the tropics. For example, crop varieties grown in the Sahel may not be able to withstand the projected warming trends and will certainly be at risk due to projected lower amounts of rainfall as well. Seasonal to interannual climate forecasts will definitely improve in the future with a better understanding of dynamic relationships. However, the main issue at present is how to make better use of the existing information and dispersion of knowledge to the farm level. Direct participation by the farming communities in pilot projects on agrometeorological services will be essential to determine the actual value of forecasts and to better identify the specific user needs. Old (visits, extension radio) and new (internet) communication techniques, when adapted to local applications, may assist in the dissemination of useful information to the farmers and decision makers. Some farming systems with an inherent resilience may adapt more readily to climate pressures, making long-term adjustments to varying and changing conditions. Other systems will need interventions for adaptation that should be more strongly supported by agrometeorological services for agricultural producers. This applies, among others, to systems where pests and diseases play an important role. Scientists have to guide policy makers in fostering an environment in which adaptation strategies can be effected. There is a clear need for integrating preparedness for climate variability and climate change. In developed countries, a trend of higher yields, but with greater annual fluctuations and changes in cropping patterns and crop calendars can be expected with changing climate scenarios. Shifts in projected cropping patterns can be disruptive to rural societies in general. However, developed countries have the technology to adapt more readily to the projected climate changes. In many developing countries, the present conditions of agriculture and forestry are already marginal, due to degradation of natural resources, the use of inappropriate technologies and other stresses. For these reasons, the ability to adapt will be more difficult in the tropics and subtropics and in countries in transition. Food security will remain a problem in many developing countries. Nevertheless, there are many examples of traditional knowledge, indigenous technologies and local innovations that can be used effectively as a foundation for improved farming systems. Before developing adaptation strategies, it is essential to learn from the actual difficulties faced by farmers to cope with risk management at the farm level. Agrometeorologists must play an important role in assisting farmers with the development of feasible strategies to adapt to climate variability and climate change. Agrometeorologists should also advise national policy makers on the urgent need to cope with the vulnerabilities of agriculture and forestry to climate variability and climate change. The workshop recommendations were largely limited to adaptation. Adaptation to the adverse effects of climate variability and climate change is of high priority for nearly all countries, but developing countries are particularly vulnerable. Effective measures to cope with vulnerability and adaptation need to be developed at all levels. Capacity building must be integrated into adaptation measures for sustainable agricultural development strategies. Consequently, nations must develop strategies that effectively focus on specific regional issues to promote sustainable development.  相似文献   

20.
宁夏中部干旱带生态变化与沙尘暴发生的关系分析   总被引:6,自引:0,他引:6       下载免费PDF全文
利用TM遥感资料, 结合8大类土地详查资料, 基本查清了位于宁夏中部干旱带具有代表性的沙尘暴高发区盐池县20世纪90年代年际变迁量化特征。分析表明, 盐池县90年代初期的生态状况明显好于末期。气候干旱是导致生态变化的主要原因, 但人为活动如大量开垦耕地、过牧及滥挖甘草等也是重要因子。依据沙尘暴的成因, 通过对近30年盐池县沙尘暴个例多源资料综合分析, 局部治理整体恶化的生态现状导致了沙尘暴起暴阈值的明显下降, 即近30年来沙尘暴在宁夏中部的干旱地带发生机率已显著提高。由于造成我国西北地区土地荒漠化的气候、水资源短缺、土地资源超载等因素在可预见的一个相当长的时期将难以得到较大的改善, 且干旱区的生态环境具有脆弱性、易损性、难复性等特点, 该文通过较全面客观的量化分析, 初次提出今后我国西北地区的沙尘暴发生机率应处在上升的态势之中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号