首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the first systematic hydrogeological analysis to grain insights on the evolution of the Gonghe Basin in North China. Two hundred and forty seven water samples were collected from the Gonghe East Basin, Gonghe West Basin and Chaka Basin. The three groundwater systems of Gonghe Basin from west to east display different geochemical signatures. Based on Na/Cl ratios and Langelier-Ludwig diagram, it is inferred that the groundwater recharge potential of the Gonghe East Basin is much prosperous than the other areas. The renewability of the aquifers in alluvial-proluvial fan of Wahonghe and Gonghe East Basin margin is much faster than in the other basins. The groundwater quality in Chaka Salt Lake,Shazhuyu and Qiabuqia River Valley plains is low due to strong evaporation and cation exchange. The groundwater quality of the phreatic aquifers in the Qiabuqia River Valley plain is further deteriorated by mixing of high-arsenic and high-mineralization water from the deep fault structures.  相似文献   

2.
Understanding water exchange between groundwater and streams, or groundwater/surface-water relationships, is of primary importance for solving conflicts related to water use and for restoring water ecosystems. To this end, a combination of classic geochemical tools and isotopic tools were tested on the Bassée study site, located in the alluvial plain of the River Seine, to see whether they are relevant for tracing multiple and complex groundwater/surface-water relationships. The Ca/Sr ratio associated with Sr isotopes shows contrasted values and suggests that infiltration of surface water to groundwater increases when approaching the Seine. Furthermore, stable isotopes of the water molecule indicate that water from gravel-pit lakes may infiltrate into groundwater. Tritium and CFC tools confirmed surface-water influence on the Alluvial and Chalk aquifers. This geochemical approach, tested on the Bassée site, clearly demonstrates the need of using various geochemical tools for describing groundwater/surface-water relationships, and can be conclusively addressed to other case studies for helping decision makers in their management of natural water resources.  相似文献   

3.
An area covering assessment of the groundwater residence times for the upper pore aquifers in the River Elbe Basin was performed. Residence times were determined by combining groundwater velocities and flow distances along each flow-path to the surface waters using a two-dimensional model approach. Groundwater velocity was calculated as a function of hydraulic conductivity, hydraulic gradient and effective yield of pore space. Flow paths were obtained by an analysis of the morphology of the groundwater table. The mean groundwater residence time in the pore aquifers of the River Elbe Basin was quantified to about 25 years. A strong temporal blurring in the different regions between less than one year and more than 250 years was obtained. For the regional groundwater management in the Elbe Basin the groundwater residence times are an important parameter, which helps to take into account the temporal dimension in the assessment of the impact of political measures aiming at the improvement of groundwater quality with regard to diffuse pollutants (e.g. nitrate).  相似文献   

4.
何静  韩再生  牛磊 《地学前缘》2011,18(6):358-366
跨界含水层由位于不同国家的含水层组成,是地下水资源系统的重要组成部分。妥善管理并公平合理地利用跨界含水层,对促进可持续发展及国家之间的睦邻友好关系有着重要意义。通过分析澜沧江—湄公河流域水文地质条件,划定流域的跨界含水层系统,并对地下水资源与环境问题进行探索,提出跨界含水层综合评价指标体系,结合澜沧江—湄公河流域4个跨界含水层相关的指标进行了综合评价。本次研究,对管理澜沧江—湄公河流域跨界含水层,建设和谐的东南亚国际环境有着重要意义。  相似文献   

5.
降水和人工灌溉是黑河中游浅层地下水重要的补给来源。长期以来入渗补给量评价采用经验参数法,但没有成熟的监测方法和实证数据。采用人工溴示踪法研究黑河中游不同灌溉条件和不同深度条件下的地下水入渗补给规律。结果表明:研究区大气降水条件下包气带溴离子含量峰值年均运移距离为21.25 cm,年平均入渗补给量为11.93 mm,入渗补给系数为0.1;大水漫灌条件下包气带溴离子含量峰值年均运移距离为86.51 cm,年平均入渗补给量为148.7 mm,入渗补给系数为0.16;小水漫灌条件下包气带溴离子含量峰值年均运移距离为46.35 cm,年平均入渗补给量为 53.81 mm,入渗补给系数为0.07;滴灌条件下年包气带溴离子含量峰值年均运移距离为41.72 cm,年平均入渗补给量为52.6 mm,入渗补给系数为0.11。人工溴示踪剂应投放在包气带水分单向入渗下行区,一般西北内陆盆地在地表3 m以下为宜。此研究成果可为黑河流域地下水资源评价提供实证参数,对西北内流盆地地下水水资源量与合理开发利用的科学认识具有重要意义。  相似文献   

6.
The Denver Basin bedrock aquifer system is an important source of water for municipal and agricultural uses in the Denver and Colorado Springs metropolitan areas. The Denver area is one of the fastest growing areas in the United States with a population of 1.2 million in 1960 that has increased to over 2.4 million by 2000. This rapid population growth has produced a corresponding increase in demand for potable water. Historically, the Denver area has relied on surface water, however, in the past 10 years new housing and recreation developments have begun to rely on groundwater from the bedrock aquifers as the surface water is fully appropriated and in short supply.The Denver Basin bedrock aquifer system consists of Tertiary and Cretaceous age sedimentary rocks known as the Dawson, Denver, Arapahoe and Laramie-Fox Hills Aquifers. The number of bedrock wells has increased from 12,000 in 1985 to 33,700 in 2001 and the withdrawal of groundwater has caused water level declines of 76 m. Water level declines for the past 10 years have ranged from 3 to 12 m per year. The groundwater supplies were once thought to last 100 years but there is concern that the groundwater supplies may be essentially depleted in 10 to 15 years in areas on the west side of the basin.Extensive development of the aquifer system has occurred in the last 25 years especially near the center of the basin in Douglas and El Paso Counties where rapid urban growth continues and surface water is lacking. Groundwater is being mined from the aquifer system because the discharge by wells exceeds the rate of recharge. Concern is mounting that increased groundwater withdrawal will cause water level declines, increased costs to withdraw groundwater, reduced well yield, and reduced groundwater storage. As the long-term sustainability of the groundwater resource is in doubt, water managers believe that the life of the Denver Basin aquifers can be extended with artificial recharge, water reuse, restrictions on lawn watering, well permit restrictions and conservation measures.  相似文献   

7.
从黑河流域地下水年龄论其资源属性   总被引:16,自引:1,他引:16  
地下水资源的可持续性是当前干旱区流域水资源管理的首要问题之一 ,我国西北内陆干旱区地下水的可持续开发必须首先要了解地下水系统的更新能力 ,地下水的放射性同位素测年可以提供系统循环时间和更新能力的重要信息。本文利用地下水中放射性氚 (3H )和碳 (1 4C)测年方法 ,计算黑河流域地下水的年龄 ,进而讨论地下水的更新性。结果表明 :潜水年龄多数小于 5 0 a,具有可再生的资源的属性 ,其中山前戈壁带和张掖盆地细土平原潜水地下水年龄小于 4 0 a,为 196 3年以来补给。酒泉东盆地排泄区承压含水层中地下水的年龄为 2 338~5 5 6 9a,额济纳附近的深层承压含水层中 ,地下水的年龄为 5 4 86~ 86 30 a,地下水资源更新性较差。但是张掖盆地河流附近深层承压地下水年龄小于 5 0 a,具有一定的更新性。上述认识不仅对黑河流域水资源管理和生态环境建设具有重要意义 ,而且对西北类似的内流盆地的地下水系统的研究有着借鉴意义  相似文献   

8.
The modeling of changes in surface water and groundwater in the areas of inter-basin water diversion projects is quite difficult because surface water and groundwater models are run separately most of the time and the lack of sufficient data limits the application of complex surface-water/groundwater coupling models based on physical laws, especially for developing countries. In this study, a distributed surface-water and groundwater coupling model, named the distributed time variant gain model–groundwater model (DTVGM-GWM), was used to assess the influence of climate change and inter-basin water diversion on a watershed hydrological cycle. The DTVGM-GWM model can reflect the interaction processes of surface water and groundwater at basin scale. The model was applied to the Haihe River Basin (HRB) in eastern China. The possible influences of climate change and the South-to-North Water Diversion Project (SNWDP) on surface water and groundwater in the HRB were analyzed under various scenarios. The results showed that the newly constructed model DTVGM-GWM can reasonably simulate the surface and river runoff, and describe the spatiotemporal distribution characteristics of groundwater level, groundwater storage and phreatic recharge. The prediction results under different scenarios showed a decline in annual groundwater exploitation and also runoff in the HRB, while an increase of groundwater storage and groundwater level after the SNWDP’s operation. Additionally, as the project also addresses future scenarios, a slight increase is predicted in the actual evapotranspiration, soil water content and phreatic recharge. This study provides valuable insights for developing sustainable groundwater management options for the HRB.  相似文献   

9.
Groundwater is an important and readily available source of fresh water in the Mekong-Lancang River Basin. With a rapid population growth and increasing human activities, an increasing number of countries in the Mekong-Lancang River Basin are experiencing depleted and degraded groundwater supplies. In transboundary river basins, such as the Mekong-Lancang River, prioritizing the use of the shared aquifer by one riparian government may affect the opportunities of other riparian governments and lead to potential water conflicts between neighboring countries. To promote the sharing of strategies and information for the sustainable and equitable use of water resources of the shared basin, international collaborative workshops on groundwater resources have been organized for all Mekong-Lancang River countries. These workshops provide an opportunity to communicate and discuss nationally sensitive issues on groundwater by the associated countries, with topics covering multiple aspects of groundwater, such as the groundwater status in the basin, quality issues, water use conflicts, hydrological information gaps, management policies and capacity building for successful water resource management. Consensus has been reached by all countries on the importance of catchment-based groundwater management and the need for close communication among the countries. Strategies for managing transboundary aquifer issues must foster international collaboration based on the regional network, influence national networks and enhance the capacity to building maps and monitoring systems based on associated databases. The sustainability of water resources cannot be achieved without the integrated involvement and contributions by multiple countries and various stakeholders. Therefore, collaborative workshops provide a great opportunity to further our understanding of the hydrologic processes of the Mekong River Basin, share the benefits of the aquifer and provide a strategy and vision for sustainable water resource management in the Mekong-Lancang River countries.  相似文献   

10.

Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  相似文献   

11.
It is necessary to understand the presence, movement, and persistence of contaminants in aquifers to develop adequate groundwater protection plans. Fractured bedrock aquifers with thin overburden cover are very sensitive to contamination, and little is known about transport processes from the ground surface to depth in this setting. This study was undertaken to investigate the potential of groundwater contamination by polybrominated diphenyl ethers (PBDEs), which are flame retardants, in a natural fractured bedrock aquifer in Canada proven to be sensitive to contamination. PBDEs, which had not been previously measured in groundwater in detail, were detected in the study aquifer at concentrations greater than those observed in surface-water bodies. Potential sources include manure, septic tanks, and the atmosphere. From this scoping study, it is evident that additional surveys of PBDE concentrations in groundwater are warranted, especially in settings with high potential source concentrations coupled with sensitive aquifers.  相似文献   

12.
Zhangye Basin, in arid northwestern China, has recently been repeatedly flooded by rising groundwater. Isotope signatures of sampled waters gained insight into the recharge source of the groundwater. The summer Heihe River water and most of the spring water in Zhangye and Yongchang basins plotted above the global meteoric water line (GMWL) on the δ18O-δD plot. The spring water had R/Ra ratio >1, low TDS and high tritium, which indicates origin from Qilian Mountain glacier meltwater. The groundwater of Qilian Mountains was transported to the Hexi Corridor (in which Zhangye Basin is located) through underground fault zones. Additionally, some of the groundwater in the alluvial plain, and all spring water surrounding Zhangye Basin, plotted below the GMWL on the δ18O-δD plot along an evaporation line, and had R/Ra ratio?<?1 and high TDS. It is proposed that the Tibetan rivers or lakes source the Hexi Corridor groundwater through either the NE-trending or NW-trending buried fault zones. The isotopic signatures presented as part of this study rule out the conventional viewpoint that groundwater of the Zhangye Basin was recharged by local precipitation and infiltration of Heihe River water on the alluvial plain.  相似文献   

13.
Investigation of the evolution of the groundwater system and its mechanisms is critical to the sustainable management of water in river basins. Temporal and spatial distributions and characteristics of groundwater have undergone a tremendous change with the intensity of human activities in the middle reaches of the Heihe River Basin (HRB), the second largest arid inland river basin in northwestern China. Based on groundwater observation data, hydrogeological data, meteorological data and irrigation statistical data, combined with geostatistical analyses and groundwater storage estimation, the basin-scaled evolution of the groundwater levels and storage (from 1985 to 2013) were investigated. The results showed that the unbalanced allocation of water sources and expanded cropland by policy-based human activities resulted in the over-abstraction of groundwater, which induced a general decrease in the water table and groundwater storage. The groundwater level has generally fallen from 4.92 to 11.49 m from 1985 to 2013, especially in the upper and middle parts of the alluvial fan (zone I), and reached a maximum depth of 17.41 m. The total groundwater storage decreased by 177.52?×?108 m3; zone I accounted for about 94.7 % of the total decrease. The groundwater balance was disrupted and the groundwater system was in a severe negative balance; it was noted that the groundwater/surface-water interaction was also deeply affected. It is essential to develop a rational plan for integration and management of surface water and groundwater resources in the HRB.  相似文献   

14.
The Ejina Basin underlying complex aquifers is located in the lower reaches of the Heihe River with an arid climate and 40 mm mean annual precipitation. As the balance of the natural ecosystem in the Ejina Basin is fragile and easily upset, it is very important to estimate and rationally use the limited groundwater resources to maintain the balance. Water samples were collected from the Heihe River and wells for chemical and isotopic measurements across the basin. The Piper diagram gives two main types of hydrochemical features. Against the background of the regional geology, combining isotope 18O, tritium, and chemical analysis with groundwater flows indicated by a shallow groundwater level contour map, different kinds of groundwater sources and ways to replenish groundwater were discovered. North of the study area are artesian wells that are replenished by the mountainous area at the boundary between China and Mongolia. Replenishment for most of the groundwater resources of the Gurinai oasis comes from the Heihe River seepage flow of the highly conductive paleochannel, not from the Badain Jaran Desert as indicated by TDS and tritium analysis. The different groundwater ages which are younger than 35 years were approximately estimated by radioactive isotope tritium (T). By such efforts, groundwater resources can be effectively evaluated with the engineering impact of the Heihe River Project.  相似文献   

15.
在甘肃省石羊河流域历史水资源开发利用情况简述基础上,结合城镇化进程,提出目前武威市的农业用水来源于祁连山山前水库拦蓄地表水,景电二期延伸工程向民勤所调黄河水及部分地方开采地下水;工业、生活用水均取自地下水,水量供给与天然补给上已处于严重失调状态。就城市地下水源地保护区划分而言,以传统的地下水开采影响半径为基本依据所进行的现代地下水源地保护区划分是不合理、不够科学的,应当在地下水补给、径流、排泄条件分析基础上,将水源地上游整个流域划定为保护区,以永久性解决城市地下水供水中存在的水源地安全问题。另外,针对石羊河流域重点治理规划中的调水方案,比较科学、合理的做法是:应从石羊河流域地下水文地质条件出发,遵循第四世地质历史时期形成的地下水补给、径流、排泄通道,在全流域实施压减灌溉面积、减少地下水开采量的同时,将景电二期延伸工程所调黄河水与祁连山山前部分水库地表水部分地或全部地从石羊河上游———武威盆地上游区域通过灌溉或其它方式下渗,补给进入地下水系统中,最终达到六河水系及下游地下水位停止下降,石羊河下游民勤盆地地下水位持续回升的综合治理规划目标,而不是将水直接调入下游民勤盆地。  相似文献   

16.
A study was conducted between April 2004 and September 2005 to estimate groundwater and nutrient discharge to the Neuse River estuary in North Carolina. The largest groundwater fluxes were observed to occur generally within 20 m of the shoreline. Groundwater flux estimates based on seepage meter measurements ranged from 2.86?×?108 to 4.33?×?108 m3 annually and are comparable to estimates made using radon, a simple water-budget method, and estimates derived by using Darcy’s Law and previously published general aquifer characteristics of the area. The lower groundwater flux estimate (equal to about 9 m3 s?1), which assumed the narrowest groundwater discharge zone (20 m) of three zone widths selected for an area west of New Bern, North Carolina, most closely agrees with groundwater flux estimates made using radon (3–9 m3 s?1) and Darcy’s Law (about 9 m3 s?1). A groundwater flux of 9 m3 s?1 is about 40% of the surface-water flow to the Neuse River estuary between Streets Ferry and the mouth of the estuary and about 7% of the surface-water inflow from areas upstream. Estimates of annual nitrogen (333 tonnes) and phosphorus (66 tonnes) fluxes from groundwater to the estuary, based on this analysis, are less than 6% of the nitrogen and phosphorus inputs derived from all sources (excluding oceanic inputs), and approximately 8% of the nitrogen and 17% of the phosphorus annual inputs from surface-water inflow to the Neuse River estuary assuming a mean annual precipitation of 1.27 m. We provide quantitative evidence, derived from three methods, that the contribution of water and nutrients from groundwater discharge to the Neuse River estuary is relatively minor, particularly compared with upstream sources of water and nutrients and with bottom sediment sources of nutrients. Locally high groundwater discharges do occur, however, and could help explain the occurrence of localized phytoplankton blooms, submerged aquatic vegetation, or fish kills.  相似文献   

17.
Hydrologic time series of groundwater levels, streamflow, precipitation, and tree-ring indices from four alluvial basins in the southwestern United States were spectrally analyzed, and then frequency components were reconstructed to isolate variability due to climatic variations on four time scales. Reconstructed components (RCs), from each time series, were compared to climatic indices like the Pacific Decadal Oscillation (PDO), North American Monsoon (NAM), and El Niño-Southern Oscillation (ENSO), to reveal that as much as 80% of RC variation can be correlated with climate variations on corresponding time scales. In most cases, the hydrologic RCs lag behind the climate indices by 1–36 months. In all four basins, PDO-like components were the largest contributors to cyclic hydrologic variability. Generally, California time series have more variation associated with PDO and ENSO than the Arizona series, and Arizona basins have more variation associated with NAM. ENSO cycles were present in all four basins but were the largest relative contributors in southeastern Arizona. Groundwater levels show a wide range of climate responses that can be correlated from well to well in the various basins, with climate responses found in unconfined and confined aquifers from pumping centers to mountain fronts.  相似文献   

18.
Pollution of groundwater in the Bengal Basin (Bangladesh and West Bengal, India) by arsenic (As) puts at risk the health of more than 100 million consumers. Using 1,580 borehole lithological logs and published hydrochemistry on 2,387 wells, it was predicted that low-As (<10 μg/L) groundwater exists, in palaeo-interfluvial aquifers of brown sand capped by a protective palaeosol, beneath at least 45,000 km2 of the Bengal Basin. The aquifers were predicted to be at a depth of as little as 25 m below ground level (mbgl), and typically no more than 50 mbgl. The predictions were confirmed along an east–west traverse 115 km in length (i.e. across half of Bangladesh) by drilling 28 new boreholes to 91-m depth to reveal subsurface sedimentology, and by mapping As distribution in groundwater. The aquifers identified occur at typically <40 mbgl and so are accessible with local drilling methods. A protective palaeosol that caps the palaeo-interfluvial aquifers prevents downward movement into them of As-polluted groundwater present in shallower palaeo-channel aquifers and ensures that the palaeo-interfluvial aquifers will yield low-As groundwater for the foreseeable future. Their use, in place of the shallower As-polluted palaeo-channel aquifers, would rapidly mitigate the health risks from consumption of As-polluted groundwater.  相似文献   

19.
Identification and quantification of groundwater and surface-water interactions provide important scientific insights for managing groundwater and surface-water conjunctively. This is especially relevant in semi-arid areas where groundwater is often the main source to feed river discharge and to maintain groundwater dependent ecosystems. Multiple field measurements were taken in the semi-arid Bulang sub-catchment, part of the Hailiutu River basin in northwest China, to identify and quantify groundwater and surface-water interactions. Measurements of groundwater levels and stream stages for a 1-year investigation period indicate continuous groundwater discharge to the river. Temperature measurements of stream water, streambed deposits at different depths, and groundwater confirm the upward flow of groundwater to the stream during all seasons. Results of a tracer-based hydrograph separation exercise reveal that, even during heavy rainfall events, groundwater contributes much more to the increased stream discharge than direct surface runoff. Spatially distributed groundwater seepage along the stream was estimated using mass balance equations with electrical conductivity measurements during a constant salt injection experiment. Calculated groundwater seepage rates showed surprisingly large spatial variations for a relatively homogeneous sandy aquifer.  相似文献   

20.
A groundwater flow model of the Alpine valley aquifer in the Aosta Plain (NW Italy) showed that well pumping can induce river streamflow depletions as a function of well location. Analysis of the water budget showed that ~80% of the water pumped during 2 years by a selected well in the downstream area comes from the baseflow of the main river discharge. Alluvial aquifers hosted in Alpine valleys fall within a particular hydrogeological context where groundwater/surface-water relationships change from upstream to downstream as well as seasonally. A transient groundwater model using MODFLOW2005 and the Streamflow-Routing (SFR2) Package is here presented, aimed at investigating water exchanges between the main regional river (Dora Baltea River, a left-hand tributary of the Po River), its tributaries and the underlying shallow aquifer, which is affected by seasonal oscillations. The three-dimensional distribution of the hydraulic conductivity of the aquifer was obtained by means of a specific coding system within the database TANGRAM. Both head and flux targets were used to perform the model calibration using PEST. Results showed that the fluctuations of the water table play an important role in groundwater/surface-water interconnections. In upstream areas, groundwater is recharged by water leaking through the riverbed and the well abstraction component of the water budget changes as a function of the hydraulic conditions of the aquifer. In downstream areas, groundwater is drained by the river and most of the water pumped by wells comes from the base flow component of the river discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号