首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The South Atlantic response to a collapse of the North Atlantic meridional overturning circulation (AMOC) is investigated in the ECHAM5/MPI-OM climate model. A reduced Agulhas leakage (about 3.1?Sv; 1?Sv?=?106?m3?s?1) is found to be associated with a weaker Southern Hemisphere (SH) supergyre and Indonesian throughflow. These changes are due to reduced wind stress curl over the SH supergyre, associated with a weaker Hadley circulation and a weaker SH subtropical jet. The northward cross-equatorial transport of thermocline and intermediate waters is much more strongly reduced than Agulhas leakage in relation with an AMOC collapse. A cross-equatorial gyre develops due to an anomalous wind stress curl over the tropics that results from the anomalous sea surface temperature gradient associated with reduced ocean heat transport. This cross-equatorial gyre completely blocks the transport of thermocline waters from the South to the North Atlantic. The waters originating from Agulhas leakage flow somewhat deeper and most of it recirculates in the South Atlantic subtropical gyre, leading to a gyre intensification. This intensification is consistent with the anomalous surface cooling over the South Atlantic. Most changes in South Atlantic circulation due to global warming, featuring a reduced AMOC, are qualitatively similar to the response to an AMOC collapse, but smaller in amplitude. However, the increased northward cross-equatorial transport of intermediate water relative to thermocline water is a strong fingerprint of an AMOC collapse.  相似文献   

2.
Analyzed is the interannual variability of the meridional mass transport ψS in the North Atlantic based on the Sverdrup relation. The continuous (1980–2005) monthly wind stress dataset with the spatial resolution of 1 × 1° was used as the initial data. Sverdrup transport analysis performed for different latitudinal transects within the North Atlantic subtropical gyre demonstrated that the maximum long-term Sverdrup transport (?25.2 Sv) can be found at 33°N. Studied is a mechanism of the interaction between the meridional Sverdrup transport and the water flow in the Florida Strait. The significant correlation coefficient (0.5) is revealed for the Florida Strait water discharge and the mass transport at 27°N. Analyzed is the relationship between ψS and the North Atlantic Oscillation index and the statistically significant correlation coefficient (0.45) is obtained for the Sverdrup transport at 49°N.  相似文献   

3.
A box model of the inter-hemispheric Atlantic meridional overturning circulation is developed, including a variable pycnocline depth for the tropical and subtropical regions. The circulation is forced by winds over a periodic channel in the south and by freshwater forcing at the surface. The model is aimed at investigating the ocean feedbacks related to perturbations in freshwater forcing from the atmosphere, and to changes in freshwater transport in the ocean. These feedbacks are closely connected with the stability properties of the meridional overturning circulation, in particular in response to freshwater perturbations. A separate box is used for representing the region north of the Antarctic circumpolar current in the Atlantic sector. The density difference between this region and the north of the basin is then used for scaling the downwelling in the north. These choices are essential for reproducing the sensitivity of the meridional overturning circulation observed in general circulation models, and therefore suggest that the southernmost part of the Atlantic Ocean north of the Drake Passage is of fundamental importance for the stability of the meridional overturning circulation. With this configuration, the magnitude of the freshwater transport by the southern subtropical gyre strongly affects the response of the meridional overturning circulation to external forcing. The role of the freshwater transport by the overturning circulation (M ov ) as a stability indicator is discussed. It is investigated under which conditions its sign at the latitude of the southern tip of Africa can provide information on the existence of a second, permanently shut down, state of the overturning circulation in the box model. M ov will be an adequate indicator of the existence of multiple equilibria only if salt-advection feedback dominates over other processes in determining the response of the circulation to freshwater anomalies. M ov is a perfect indicator if feedbacks other than salt-advection are negligible.  相似文献   

4.
The mechanisms behind the seasonal deepening of the mixed layer(ML) in the subtropical Southeast Pacific were investigated using the monthly Argo data from 2004 to 2012. The region with a deep ML(more than 175 m) was found in the region of(22?–30?S, 105?–90?W), reaching its maximum depth(~200 m) near(27?–28?S, 100?W) in September. The relative importance of horizontal density advection in determining the maximum ML location is discussed qualitatively. Downward Ekman pumping is key to determining the eastern boundary of the deep ML region. In addition, zonal density advection by the subtropical countercurrent(STCC) in the subtropical Southwest Pacific determines its western boundary, by carrying lighter water to strengthen the stratification and form a "shallow tongue" of ML depth to block the westward extension of the deep ML in the STCC region. The temperature advection by the STCC is the main source for large heat loss from the subtropical Southwest Pacific. Finally, the combined effect of net surface heat flux and meridional density advection by the subtropical gyre determines the northern and southern boundaries of the deep ML region: the ocean heat loss at the surface gradually increases from 22?S to 35?S, while the meridional density advection by the subtropical gyre strengthens the stratification south of the maximum ML depth and weakens the stratification to the north. The freshwater flux contribution to deepening the ML during austral winter is limited. The results are useful for understanding the role of ocean dynamics in the ML formation in the subtropical Southeast Pacific.  相似文献   

5.
《大气与海洋》2012,50(4):307-317
ABSTRACT

This study investigates the response of the subtropical gyre circulation in the North Pacific Ocean to quadrupled CO2 using the Community Earth System Model, version 1 (CESM1). In particular, an overriding technique is applied to isolate and quantify the effects of wind stress and thermal warming caused by CO2 emissions. Results show that, in response to the increase in CO2, the total mass transport in the subtropical gyre is reduced by approximately 11%. This reduction results mainly from negative anomalies of the wind stress curl over the subtropical region, with a smaller contribution from the thermal warming effect. Furthermore, a detailed analysis finds that the change in the subtropical gyre is baroclinic in nature [i.e., the gyre appears to be spin-up in the upper ocean (above 300?m) but spin-down in the lower thermocline (from 300 to 1500?m)]. This reversal between the upper ocean and lower thermocline is a result of the thermal warming effect, which intensifies ocean stratification, hindering the transfer of momentum from the upper layers to the lower layers and leading to an acceleration of the gyre in the upper ocean but a deceleration in the lower thermocline. Another feature of the response of the subtropical gyre to quadrupled CO2 is the respective poleward and equatorward movements of its northern and southern boundaries, which is a result of the change in the zero wind stress curl lines.  相似文献   

6.
A simplified coupled ocean–atmosphere model, consisting of a one-layer bidimensional ocean model and a one-layer unidimensional energy balance atmospheric model [J. Clim. 13 (2000) 232] is used to study the unstable interactions between zonal winds and ocean gyres. In a specific range of parameters, decadal variability is found. Anomalies, quite homogeneous zonally, show small-scale wavelength in latitude: perturbations emerge and grow at the southern limb of the intergyre boundary and propagate southward before decaying. The wind stress anomalies are proportional to the meridional gradient of the atmospheric temperature anomalies: this ratio acts as a positive amplification factor, as confirmed by a parameter sensitivity analysis. Assuming zonally-averaged anomalies harmonic in the meridional direction, a very simple analytical model for the perturbations is derived, based on forced Rossby wave adjustment of the western boundary current and its associated anomalous heat transport: it accounts for the scale selection, the growth and the southward propagation of sea surface temperature anomalies in the subtropical gyre. The latter is not only due to the slow advection by the mean current, but to a prevailing mechanism of self-advecting coupled oceanic and atmospheric waves, out of phase in latitude. Relevance to the observational record is discussed.  相似文献   

7.
Interactions between the tropical and subtropical northern Pacific at decadal time scales are examined using uncoupled oceanic and atmospheric simulations. An atmospheric model is forced with observed Pacific sea surface temperatures (SST) decadal anomalies, computed as the difference between the 2000–2009 and the 1990–1999 period. The resulting pattern has negative SST anomalies at the equator, with a global pattern reminiscent of the Pacific decadal oscillation. The tropical SST anomalies are responsible for driving a weakening of the Hadley cell and atmospheric meridional heat transport. The atmosphere is then shown to produce a significant response in the subtropics, with wind-stress-curl anomalies having the opposite sign from the climatological mean, consistent with a weakening of the oceanic subtropical gyre (STG). A global ocean model is then forced with the decadal anomalies from the atmospheric model. In the North Pacific, the shallow subtropical cell (STC) spins down and the meridional heat transport is reduced, resulting in positive tropical SST anomalies. The final tropical response is reached after the first 10 years of the experiment, consistent with the Rossby-wave adjustment time for both the STG and the STC. The STC provides the connection between subtropical wind stress anomalies and tropical SSTs. In fact, targeted simulations show the importance of off-equatorial wind stress anomalies in driving the oceanic response, whereas anomalous tropical winds have no role in the SST signal reversal. We further explore the connection between STG, STC and tropical SST with the help of an idealized model. We argue that, in our models, tropical SST decadal variability stems from the forcing of the Pacific subtropical gyre through the atmospheric response to ENSO. The resulting Ekman pumping anomaly alters the STC and oceanic heat transport, providing a negative feedback on the SST. We thus suggest that extratropical atmospheric responses to tropical forcing have feedbacks onto the ocean dynamics that lead to a time-delayed response of the tropical oceans, giving rise to a possible mechanism for multidecadal ocean-atmosphere coupled variability.  相似文献   

8.
A calculation to determine the poleward heat flux by an oceanic subtropical gyre is described. The circulation is given by Stommel's (1948) barotropic wind-driven model, and the temperature field is treated as a passive tracer. Air-sea heat exchange is parameterized as linearly proportional to the difference between air and sea temperatures. The problem so formulated reduces to the solution of the advection-diffusion (heat) equation for the temperature. The results show how ocean circulation, with a narrow western boundary layer, transports significantly more heat than does a symmetric circulation. A more intense circulation transports more heat but the increase levels off beyond a certain point. A wide ocean basin transports more of its heat by conduction than does a narrow basin. Approximate analytical solutions for both weak and strong circulations yield results that agree semiquantitatively with the numerical results.  相似文献   

9.
Climatic inferences from the ventilated thermocline   总被引:1,自引:0,他引:1  
Several computed cases of a model of the subtropical gyre with a partially ventilated thermocline (Luytenet al., 1982) are presented to illustrate the sensitivity of the field of density stratification, mean flow and location of unventilated regions to slight changes in surface boundary conditions. The structure of the low latitude thermocline is less sensitive to climatic change in amount of water forced down by convergence of wind-driven surface layers at higher latitudes than might be expected, even allowing for the well-known localness of vertically integrated meridional transport. On the other hand changes in structure at low latitudes do arise from changes in boundary conditions on the surface density at higher latitudes. The main climatic inference for transient tracers injected into a thermocline in steady state is that there are two time-scales in the subtropical thermocline: an advective time scale associated with distance from regions of direct ventilation of a density layer at the surface, and a subsurface diffusive time scale from ventilated to unventilated region.  相似文献   

10.
In order to simulate the climatic conditions of the Neoproterozoic, we have conducted a series of simulations with a coupled ocean–atmosphere model of intermediate complexity, CLIMBER-2, using a reduced solar constant of 6% and varied CO2 concentrations. We have also tested the impact of the breakup of the supercontinent Rodinia that has been hypothesized to play an important role in the initiation of an ice-covered Earth. Our results show that for the critical values of 89 and 149 ppm of atmospheric CO2, a snowball Earth occurs in the supercontinent case and in the dislocated configuration, respectively. The study of the sensitivity of the meridional oceanic energy transport to reductions in CO2 concentration and to the dislocation of the supercontinent demonstrates that dynamics ocean processes can modulate the CO2 threshold value, below which a snowball solution is found, but cannot prevent it. The collapse of the overturning cells and of the oceanic heat transport is mainly due to the reduced zonal temperature gradient once the sea-ice line reaches the 30° latitudinal band but also to the freshening of the tropical ocean by sea-ice melt. In term of feedbacks, the meridional atmospheric heat transport via the Hadley circulation plays the major role, all along the CO2 decrease, by increasing the energy brought in the front of the sea-ice margin but does not appear enough efficient to prevent the onset of the sea-ice-albedo instability in the case of the continental configurations tested in this contribution.  相似文献   

11.
根据1998年NCEP逐日资料和TBB逐日资料,探讨了低纬度对流活动和副高周边水汽输送及其对流活动对夏季西太平洋副热带高压季节性北跳、南撤的影响效应。研究表明:低纬热带对流加强,且110°-150°E地区的南北向垂直经圈环流下沉区北移,夏季西太平洋副热带高压有北跳现象。另外,诊断结果亦表明西太平洋副高周边纬向水汽输送的显著减弱亦预示将出现副高的北跳,而西太平洋地区低纬经向水汽输送减少一候之后,副高南撤。研究结果表明西太平洋副高北跳、南撤与低纬度的对流潜热释放、中纬西太平洋副高周边的水汽输送及其对流活动存在密切的关系。数值模拟结果进一步证实上述副高活动变异与前期水汽输送及其对流特征的相关关系。  相似文献   

12.
The OSU global coupled atmosphere-ocean general circulation model has been used to investigate a 2xCO2-induced climate change. A previous analysis of the simulated 2xCO2–1xCO2 temperature differences showed that the CO2-induced warming penetrated into the ocean and thereby caused a delay in the equilibration of the climate system with an estimatede-folding time of 50–75 years. The objective of the present study is to determine by what pathways and through which physical processes the simulated ocean general circulation produces the penetration of the CO2-induced warming into the ocean.A global-mean oceanic heat budget analysis shows that the ocean gains heat at a rate of 3 W/m2 due to the CO2 doubling, and that this heat penetrates downward into the ocean predominantly through the reduction in the convective overturning. A zonal-mean oceanic heat budget analysis shows that the surface warming increases from the tropics toward the midlatitudes of both hemispheres and gradually penetrated into the deeper ocean, with a greater penetration in the subtropics and midlatitudes than in the equatorial region. The zonal-mean heat budget analysis also shows that the CO2-induced warming of the ocean occurs predominantly through the down-ward transport of heat, with the meridional heat flux being only of secondary importance. In the tropics the penetration of the CO2-induced heating is minimized by the upwelling of cold water. In the subtropics the heating is transported down-ward more readily by the downwelling existing there. In the high latitudes the suppressed convection plays the dominant role in the downward penetration of the CO2-induced heating. The latter result should be considered as tentative, however, as the ocean component of the coupled model employed a prescribed surface salinity field and did not include the mechanism of brine rejection when sea water freezes into sea ice.  相似文献   

13.
The computed long-term annual mean and intramonthly variances of air and sea surface temperature, wind stress, effective radiation at the surface, heat gain over the ocean and the total heat loss for the tropical Indian Ocean between 30 °N and 30 °S are presented. These estimates, which are based on about one million weather reports for the period 1948–1972, indicate a mean annual meridional heat transport in agreement with previous estimates in direction though different in magnitude. The annual mean E-P chart shows that the Bay of Bengal region is highly conducive to large-scale convergence.  相似文献   

14.
A laboratory study in a rotating stratified basin examines the instability and long time evolution of the geostrophic double gyre introduced by the baroclinic adjustment to an initial basin-scale step height discontinuity in the density interface of a two-layer fluid. The dimensionless parameters that are important in determining the observed response are the Burger number S=R/R0 (where R is the baroclinic Rossby radius of deformation and R0 is the basin radius) and the initial forcing amplitude (H1 is the upper layer depth). Experimental observations and a numerical approach, using contour dynamics, are used to identify the mechanisms that result in the dominance of nonlinear behaviour in the long time evolution, τ>2−1 (where τ is time scaled by the inertial period TI=2π/f). When the influence of rotation is moderate (0.25≤S≤1), the instability mechanism is associated with the finite amplitude potential vorticity (PV) perturbation introduced when the double gyre is established. On the other hand, when the influence of rotation is strong (S≤0.1), baroclinic instability contributes to the nonlinear behaviour. Regardless of the mechanism, nonlinearity acts to transfer energy from the geostrophic double gyre to smaller scales associated with an eddy field. In the lower layer, Ekman damping is pronounced, resulting in the dissipation of the eddy field after only 40TI. In the upper layer, where dissipative effects are weak, the eddy field evolves until it reaches a symmetric distribution of potential vorticity within the domain consisting of cyclonic and anticyclonic eddy pairs, after approximately 100TI. The functional dependence of the characteristic eddy lengthscale LE on S is consistent with previous laboratory studies on continuously forced geostrophic turbulence. The cyclonic and anticyclonic eddy pairs are maintained until viscous effects eventually dissipate all motion in the upper layer after approximately 800TI. The outcomes of this study are considered in terms of their contribution to the understanding of the energy pathways and transport processes associated with basin-scale motions in large stratified lakes.  相似文献   

15.
The subpolar gyre index (SPG), derived from the analysis of sea surface height (SSH), is proposed to be a potential indicator for the North Atlantic Meridional Overturning Circulation (AMOC) based on observation as well as the Ocean General Circulation Model (OGCM). We investigated the correspondence between the SPG and the AMOC in a coupled climate model. Our results confirm that the SPG can be used as an early indicator for the AMOC in the subtropical North Atlantic. Changes in the SPG are closely related to variations in the air-sea heat exchange in the Labrador Sea, and variations in deep water formation and southward dense water transport with the deep western boundary current (DWBC) in the North Atlantic. Citation: Gao, Y. Q., and L. Yu, 2008: Subpolar gyre index and the North Atlantic meridional overturning circulation in a coupled climate model, Atmos. Oceanic Sci. Lett., 1, 29-32  相似文献   

16.
Water that forms the Florida Current, and eventually the Gulf Stream, coalesces in the Caribbean from both subtropical and equatorial sources. The equatorial sources are made up of, in part, South Atlantic water moving northward and compensating for southward flow at depth related to meridional overturning circulation. Subtropical surface water contains relatively high amounts of radiocarbon (14C), whereas equatorial waters are influenced by the upwelling of low 14C water and have relatively low concentrations of 14C. We use a 250 year record of Δ14C in a coral from southwestern Puerto Rico along with previously published coral Δ14C records as tracers of subtropical and equatorial water mixing in the northern Caribbean. Data generated in this study and from other studies indicate that the influence of either of the two water masses can change considerably on interannual to interdecadal time scales. Variability due to ocean dynamics in this region is large relative to variability caused by atmospheric 14C changes, thus masking the Suess effect at this site. A mixing model produced using coral Δ14C illustrates the time varying proportion of equatorial versus subtropical waters in the northern Caribbean between 1963 and 1983. The results of the model are consistent with linkages between multidecadal thermal variability in the North Atlantic and meridional overturning circulation. Ekman transport changes related to tradewind variability are proposed as a possible mechanism to explain the observed switches between relatively low and high Δ14C values in the coral radiocarbon records.  相似文献   

17.
Parametrisations of meridional energy and moisture transport used in zonally averaged climate models are validated using reanalysis data and results from a doubling CO2-experiment from a general circulation model. Global meridional fluxes of moisture and sensible heat are calculated by integrating surface and top-of-the-atmosphere vertical fluxes from one pole to the other. The parametrisations include an eddy-diffusion term, representing down-gradient transport of specific humidity and temperature due to the transient atmospheric eddies at mid- and high latitudes, and simple representations of the mean meridional circulation. Qualitative and quantitative agreement between the increased hydrological cycle in the 2×CO2-run from the GCM and the parametrisation is found. The performance for the sensible heat flux shows larger differences to the GCM results, particularly at low latitudes. Seasonal variations of the moisture and sensible heat transport are well captured by parametrisations including the influence of the mean meridional circulation. Interannual variability cannot be simulated. An examination of the parametrisations on different spatial scales suggests that they should not be used for small scales. Furthermore, two closures for the zonal distribution of precipitation were examined. They are used in zonally averaged atmosphere models coupled to an ocean model with different ocean basins at one latitudinal belt. An assessment of both the reanalysis data and the GCM results shows that both closures exhibit very similar behaviour and are valid in the long-term mean and seasonal cycle. Interannual variability is not captured well. They become invalid for spatial scales smaller than 10. Received: 30 November 1998 / Accepted: 4 July 1999  相似文献   

18.
The interplay between the North Atlantic Oscillation (NAO) and the large scale ocean circulation is inspected in a twentieth century simulation conducted with a state-of-the-art coupled general circulation model. Significant lead–lag covariance between oceanic and tropospheric variables suggests that the system supports a damped oscillatory mode involving an active ocean–atmosphere coupling, with a typical NAO-like space structure and a 5 years timescale, qualitatively consistent with a mid-latitude delayed oscillator paradigm. The two essential processes governing the oscillation are (1) a negative feedback between ocean gyre circulation and the high latitude SST meridional gradient and (2) a positive feedback between SST and the NAO. The atmospheric NAO pattern appears to have a weaker projection on the ocean meridional overturning, compared to the gyre circulation, which leads to a secondary role for the thermohaline circulation in driving the meridional heat transport, and thus the oscillatory mode.  相似文献   

19.
The 'conveyor belt' circulation of the Atlantic Ocean transports large amounts of heat northward, acting as a heating system for the northern North Atlantic region. It is widely thought that this circulation is driven by atmospheric freshwater export from the Atlantic catchment region, and that it transports freshwater northward to balance the loss to the atmosphere. Using results from a simple conceptual model and a global circulation model, it is argued here that the freshwater loss to the atmosphere arises mainly in the subtropical South Atlantic and is balanced by northward freshwater transport in the wind-driven subtropical gyre, while the thermohaline circulation transports freshwater southward. It is further argued that the direction of freshwater transport is closely linked to the dynamical regime and stability of the 'conveyor belt': if its freshwater transport is indeed southward, then its flow is purely thermally driven and inhibited by the freshwater forcing. In this case the circulation is not far from Stommel's saddle-node bifurcation, and a circulation state without NADW formation would also be stable. Received: 10 February 1996 / Accepted: 30 May 1996  相似文献   

20.
By analyzing the results of a realistic ocean general circulation model (OGCM) and conducting a series of idealized OGCM experiments, the dynamics of the Kuroshio Current System is examined. In the realistic configuration, the Kuroshio Current System is successfully simulated when the horizontal resolution of OGCMs is increased from 1/2° to 1/10°. The difference between the two experiments shows a jet, the model’s Kuroshio Extension, and a pair of cyclonic and anticyclonic, “relative,” recirculation gyres (RRGs) on the northern and southern flanks of the jet. We call them recirculation gyres because they share some features with ordinary recirculation gyres in previous studies, and we add the adjective “relative” to emphasize that they may not be apparent in the total field. Similar zonal jet and RRGs are obtained also in the idealized model with a rectangular basin and a flat bottom with a horizontal resolution of 1/6°. The northern RRG is generated by the injection of high potential vorticity (PV) created in the viscous sublayer of the western boundary current, indicating the importance of a no-slip boundary condition. Since there is no streamline with such high PV in the Sverdrup interior, the eastward current in the northern RRG region has to lose its PV anomaly by viscosity before connecting to the interior. In the setup stage this injection of high PV is carried out by many eddies generated from the instability of the western boundary current. This high PV generates the northern RRG, which induces the separation of the western boundary current and the formation of the zonal jet. In the equilibrium state, the anomalous high PV values created in the viscous sublayer are carried eastward in the northern flank of the zonal jet. The southern RRG is due to the classical Rhines–Young mechanism, where low PV values are advected northward within the western boundary inertial sublayer, and closed, PV-conserving streamlines form to the south of the Kuroshio Extension, allowing slow homogenization of the low PV anomalies. The westward-flowing southern branch of this southern RRG stabilizes the inertial western boundary current and prevents its separation in the northern half of the Sverdrup subtropical gyre, where the western boundary current is unstable without the stabilizing effect of the southern RRG. Therefore, in the equilibrium state, the southern RRG should be located just to the north of the center of the Sverdrup subtropical gyre, which is defined as the latitude of the Sverdrup streamfunction maximum. The zonal jet (the Kuroshio Extension) and the northern RRG gyre are formed to the north of the southern RRG. This is our central result. This hypothesis is confirmed by a series of sensitivity experiments where the location of the center of the Sverdrup subtropical gyre is changed without changing the boundaries of the subtropical gyre. The locations of the zonal jets in the observed Kuroshio Current System and Gulf Stream are consistent as well. Sensitivities of the model Kuroshio Current System are also discussed with regard to the horizontal viscosity, strength of the wind stress, and coastline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号