首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Tropical climatology through the last glacial cycle is believed to have ranged from colder, windier conditions at the Last Glacial Maximum (LGM) to relatively warm, stable conditions during the Holocene. Changes in strength of the South Asian monsoon have previously been determined from a variety of proxy data and have been attributed primarily to changes in radiative forcing, although tropical sea surface temperature (SST) is known to play a fundamental role in regulating monsoon strength and is also believed to have changed throughout the late Quaternary.In this study, the monsoons simulated in a coupled atmosphere–ocean general circulation model (GCM) configured for the mid-Holocene (6000 years B.P.) and for the LGM (21,000 years B.P.) are compared. The colder and windier conditions simulated for the LGM produced a summer monsoon whose westerly winds are stronger and whose precipitation and snowfall into the eastern Himalaya are increased, with drier conditions over the rest of the Indian subcontinent and over most of southwest Asia.The mid-Holocene monsoon circulation is stronger than today, and annual mean snow accumulation is increased over the northwestern Himalaya. These changes in precipitation and snow accumulation are analyzed in terms of the altered atmospheric circulations, which are in turn driven by changes in radiative forcing, sea surface temperatures, and sea surface height. All of these factors are therefore demonstrated to be important in governing the spatial distribution of snow and ice deposition in the Himalaya during the late Quaternary, and are likely to have contributed to the observed asynchroneity of Himalayan glaciation and Northern Hemisphere ice sheet volume.  相似文献   

2.
The Chinese Loess Plateau (CLP) comprises an extensive record of eolian deposition that contains important information about climate change. The objective of this study is to investigate if mineralogy can provide more insight into the long-term evolution of the East Asian monsoon. Comparisons between mineralogy and other paleoclimatic records (grain size and magnetic susceptibility) from the CLP have been made to evaluate the efficacy of mineralogy as a paleoclimatic tool.Here we present data from a mineralogical study of a red clay–loess sequence at Lingtai, central Chinese Loess Plateau. Changes related to source area(s), transport processes and weathering regime over time are recorded in mineral variation.Higher average concentrations of kaolinite, chlorite and quartz in the red clay, together with abrupt changes in relative mineral abundances across the red clay–loess boundary suggest a change of source area at 2.6 Ma. From 2.6 Ma to about 1.7 Ma the summer monsoon influence increases, destroying chlorite and contributing fine illite particles to the sediment. At around 1.7 Ma the mineralogy becomes relatively constant, suggesting that the monsoon was fairly stable during this period. At 0.7–0.5 Ma an increase of both summer monsoon and winter monsoon activity is inferred from illite, kaolinite, chlorite and plagioclase concentrations. Over the last 0.5 Ma mineralogy suggests an aridification of source area(s) as chlorite and plagioclase concentrations increase where illite concentration decreases. The last major change occurred around 0.07 Ma and indicates reducing summer monsoon influence as chlorite and quartz concentrations increase and illite concentration, as well as the < 2 μm size fraction, decreases. The mineralogical trends and differences between loess and paleosols units suggest different source areas in the last 0.5 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号