首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
高天明  范娜  代涛 《地质学报》2024,98(4):1310-1331
传统沉淀法提锂生产周期长、不适用于低锂浓度卤水,盐湖提锂产量增长缓慢,难以满足新能源产业发展的需求。因此,开发高镁锂比卤水提锂新技术是锂产业发展的迫切需求。本文概述了吸附法、萃取法、膜法和电化学法等提锂新工艺的研究现状,发现铝基吸附剂已应用于工业生产,但其吸附容量显著地小于锰基和钛基吸附剂,而后两者的溶损和长吸附平衡时间是制约其产业化的关键。中性磷类萃取剂关注最多,但其易腐蚀和出现第三相;酰胺类萃取体系无腐蚀,已用于氯化物型卤水工业化提锂,但其稳定性需长期关注;并且萃取法工艺流程较长,酸碱消耗高。膜法无法深度除镁,需与其他方法相结合提锂,其水资源消耗量大。电渗析和“摇椅式”电化学实现了连续性提锂,加速了吸附速率,避免了洗脱剂的使用,其电耗随着优化提锂体系和工作条件的降低,电化学提锂将迎来广阔的产业前景。以上卤水提锂新工艺资源消耗和环境影响小于传统沉淀法,对高镁锂比盐湖具有显著的竞争优势,但各有弊端。因此,未来盐湖卤水提锂应加强多种新技术的集成与耦合,前移提锂过程,提升全流程锂的回收率和多种资源的综合开发。  相似文献   

2.
The Tiegelongnan Cu(Au,Ag)deposit in central Tibet contains more than 10 Mt of copper ranking 29 th in the world.It is characterized by typical porphyry-epithermal alteration and mineralization.In order to improve the understanding of porphyry-epithermal copper deposit in Tibet,new zircon U-Pb age and sulfur isotope data along with published data in the Tiegelongnan are presented to investigate the formation and preservation mechanism.Ore-related intrusive rocks in the Tiegelongnan including Early Cretaceous(about 120 Ma)granodiorite porphyry and diorite porphyry are closely related to the northward subduction of Bangongco-Nujiang ocean.Sulfur mainly comes from deep magma,and ore-forming fluid is affected by both magmatic and meteoric water.The metallogenic setting of Tiegelongnan is consistent with those of Andean porphyry copper deposits in South America.The cover of the Meiriqiecuo Formation volcanic rocks,Lhasa-Qiangtang collision and India-Eurasian collision have significance in the preservation and uplift of the deposit.The formation,preservation and discovery of Tiegelongnan play an important role in exploration of ancient porphyry-epithermal deposits in Tibet.  相似文献   

3.
《China Geology》2022,5(3):510-527
The Shimensi deposit is a recently discovered W-Cu-Mo polymetallic deposit located in the Jiangnan porphyry-skarn W belt in South China. The deposit has a resource of 0.74×106 t of WO3 accompanied by 0.4×106 t Cu and 28000 t Mo and other useful components like Ga, making it one of the largest W deposits in the world. This paper is aimed to reveal the ore-controlling mechanisms of the Shimensi deposit, involving the role of the ore-related granites, the tectonic background for its formation, and the metallogenesis model. The systematic geological survey suggests multi-types of alteration are developed in the deposit, mainly including greisenization, potassic-alteration, sericitization, chloritization, and silicification. Drilling engineering data and mining works indicate that the Shimensi deposit consists of two main orebodies of I and II. Therein, the W resource has reached a supergiant scale, and the accompanied Cu, Mo, Au, Bi, Ga, and some other useful components are also of economic significance. The main ore-minerals consist of scheelite, wolframite and chalcopyrite. Disseminated mineralization is the dominant type of the W-Cu-Mo polymetallic orebodies, and mainly distributes in the inner and external contact zone that between the Neoproterozoic biotite granodiorite and the Yanshanian granites. The main orebody occurs at the external contact zone, and the pegmatoid crust near the inner contact zone is an important prospecting marker of the W mineralization. Of them, the disseminated W ores within the wall rock of the Neoproterozoic biotite granodiorite is a new mineralization type identified in this paper. Combining previous geochronological and isotopic data, we propose that the mineralization of the Shimensi deposit is closely related to the intruding of the Yanshanian porphyritic biotite granite and granite porphyry. Geochemical data suggest that the biotite granodiorite is rich in Ca and had provided a large amount of Ca for the precipitation of scheelite in this area. Thus, it is a favorable wall rock type for W mineralization. The Shimensi deposit belongs to granitic-type W polymetallic deposit related to post-magmatic hydrothermal, and the ore-forming fluid was initially derived from the Yanshanian magmas.©2022 China Geology Editorial Office.  相似文献   

4.
《China Geology》2022,5(4):662-695
The porphyry copper belt in the Geza island arc in southwestern China is the only Indosinian porphyry copper metallogenic belt that has been discovered and evaluated so far. The Pulang porphyry copper deposit (also referred to as the Pulang deposit) in this area has proven copper reserves of 5.11×106 t. This deposit has been exploited on a large scale using advanced mining methods, exhibiting substantial economic benefit. Based on many research results of previous researchers and the authors’ team, this study proposed the following key insights. (1) The Geza island arc was once regarded as an immature island arc with only andesites and quartz diorite porphyrites occurring. This understanding was overturned in this study. Acidic endmember components such as quartz monzonite porphyries and quartz monzonite porphyries have been identified in the Geza island arc, and the mineralization is mainly related to the magmatism of quartz monzonite porphyries. (2) Complete porphyry orebodies and large vein orebodies have developed in the Pulang deposit. Main orebody KT1 occurs in the transition area between the potassium silicate alteration zone of quartz monzonite porphyries and the sericite-quartz alteration zone. Most of them have developed in the potassium silicate alteration zone. The main orebody occurs as large lenses at the top of the hanging wall of rock bodies, with an engineering-controlled length of 1920 m and thickness of 32.5‒630.29 m (average: 187.07 m). It has a copper grade of 0.21%‒1.56% (average: 0.42%) and proven copper resources of 5.11×106 t, which are associated with 113 t of gold, 1459 t of silver, and 170×103 t of molybdenum. (3) Many studies on diagenetic and metallogenic chronology, isotopes, and fluid inclusions have been carried out for the Pulang deposit, including K-Ar/Ar-Ar dating of monominerals (e.g., potassium feldspars, biotites, and amphiboles), zircon U-Pb dating, and molybdenite Re-Os dating. The results show that the porphyries in the Pulang deposit are composite plutons and can be classified into pre-mineralization quartz diorite porphyrites, quartz monzonite porphyries formed during the mineralization, and post-mineralization granite porphyries, which were formed at 223±3.7 Ma, 218±4 Ma, and 207±3.9 Ma, respectively. The metallogenic age of the Pulang deposit is 213‒216 Ma. (4) The petrogeochemical characteristics show that the Pulang deposit has the characteristics of volcanic arc granites. The calculation results of trace element contents in zircons show that quartz monzonite porphyries and granite porphyries have higher oxygen fugacity. The isotopic tracing results show that the diagenetic and metallogenic materials were derived from mixed crust- and mantle-derived magmas.©2022 China Geology Editorial Office.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号