首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The solar wind plasma exhibits many features of the solar surface passed on to the interplanetary medium as temporal variations due to the solar rotation. The yearly average values of solar wind velocity, and geomagnetic index A p during 1965–1999 were found to exhibit long period evolution. They were found to peak around the declining phase of each solar cycle. While the solar wind velocity peaks around the second half of the declining phase, the IMF field strength increases around the first half of the declining phase of each solar cycle. The power spectrum of these parameters shows peaks around 37-day, 30-day, 27-day, 13.5-day, 9-day, and 7-day periods. The temporal evolution of the power spectrum of the solar wind plasma parameters and the geomagnetic activity index A p are also studied in detail and presented with the help of contour graphs. These studies indicate that the strength of the quasi-periodicities in the interplanetary medium evolves with time.  相似文献   

2.
The geomagnetic activity is the result of the solar wind–magnetosphere interaction. It varies following the basic 11-year solar cycle; yet shorter time-scale variations appear intermittently. We study the quasi-periodic behavior of the characteristics of solar wind (speed, temperature, pressure, density) and the interplanetary magnetic field (B x , B y , B z , β, Alfvén Mach number) and the variations of the geomagnetic activity indices (D ST, AE, A p and K p). In the analysis of the corresponding 14 time series, which span four solar cycles (1966?–?2010), we use both a wavelet expansion and the Lomb/Scargle periodograms. Our results verify intermittent periodicities in our time-series data, which correspond to already known solar activity variations on timescales shorter than the sunspot cycle; some of these are shared between the solar wind parameters and geomagnetic indices.  相似文献   

3.
Measurements of the north-south (B z component of the interplanetary field as compiled by King (1975) when organized into yearly histograms of the values of ¦B z ¦ reveal the following. (1) The histograms decrease exponentially from a maximum occurrence frequency at the value ¦B z ¦ = 0. (2) The slope of the exponential on a semi-log plot varies systematically roughly in phase with the sunspot number in such a way that the probability of large values of ¦B z ¦ is much greater in the years near sunspot maximum than in the years near sunspot minimum. (3) There is a sparsely populated high-value tail, for which the data are too meager to discern any solar cycle variation. The high-value tail is perhaps associated with travelling interplanetary disturbances. (4) The solar cycle variations of B z and the ordinary indicators of solar activity are roughly correlated. (5) The solar cycle variation of B z is distinctly different than that of the solar wind speed and that of the geomagnetic Ap disturbance index.Now at the Aerospace Corporation, El Segundo, Calif. 90245, U.S.A.  相似文献   

4.
Observations of interplanetary magnetic field polarity, solar wind speed, and geomagnetic disturbance index (C9) during the years 1962–1975 are compared in a 27-day pictorial format that emphasizes their associated variations during the sunspot cycle. This display accentuates graphically several recently reported features of solar wind streams including the fact that the streams were faster, wider, and longer-lived during 1962–1964 and 1973–1975 in the declining phase of the sunspot cycle than during intervening years (Bame et al., 1976; Gosling et al., 1976). The display reveals strikingly that these high-speed streams were associated with the major, recurrent patterns of geomagnetic activity that are characteristic of the declining phase of the sunspot cycle. Finally, the display shows that during 1962–1975 the association between long-lived solar wind streams and recurrent geomagnetic disturbances was modulated by the annual variation (Burch, 1973) of the response of the geomagnetic field to solar wind conditions. The phase of this annual variation depends on the polarity of the interplanetary magnetic field in the sense that negative sectors of the interplanetary field have their greatest geomagnetic effect in northern hemisphere spring, and positive sectors have their greatest effect in the fall. During 1965–1972 when the solar wind streams were relatively slow (500 km s-1), the annual variation strongly influenced the visibility of the corresponding geomagnetic disturbance patterns.Visiting Scientist, Kitt Peak National Observatory, Tucson, Arizona.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

5.
The characteristics of latitudinal angles of solar wind flow (θv) observed near earth have been studied during the period 1973-2003. The average magnitude of θv shows distinct enhancements during the declining and maximum phases of the sunspot cycles. A close association of Bz component of IMF in the GSE system and the orientation of meridional flows in the solar wind is found which depends on the IMF sector polarity. This effect has been studied in typical geomagnetic storm periods. The occurrence of non-radial flows is also found to exhibit heliolatitudinal dependence during the years 1975 and 1985 as a characteristic feature of non-radial solar wind expansion from polar coronal holes.  相似文献   

6.
Plasma and magnetic field parameter variations across fast forward interplanetary shocks are analyzed during the last solar cycle minimum (1995–1996, 15 shocks), and maximum year 2000 (50 shocks). It was observed that the solar wind velocity and magnetic field strength variation across the shocks were the parameters better correlated with Dst. Superposed epoch analysis centered on the shock showed that, during solar minimum, B z profiles had a southward, long-duration variation superposed with fluctuations, whereas in solar maximum the B z profile presented 2 peaks. The first peak occurred 4 hr after the shock, and seems to be associated with the magnetic field disturbed by the shock in the sheath region. The second peak occurred 19 hr after the shock, and seems to be associated with the ejecta fields. The difference in shape and peak in solar maximum (Dst peak =−50 nT, moderate activity) and minimum (Dst peak =−30 nT, weak activity) in average Dst profiles after shocks are, probably, a consequence of the energy injection in the magnetosphere being driven by different interplanetary southward magnetic structures. A statistical distribution of geomagnetic activity levels following interplanetary shocks was also obtained. It was observed that during solar maximum, 36% of interplanetary shocks were followed by intense (Dst≤−100 nT) and 28% by moderate (−50≤Dst <−100 nT) geomagnetic activity. During solar minimum, 13% and 33% of the shocks were followed by intense and moderate geomagnetic activity, respectively. Thus, during solar maximum a higher relative number of interplanetary shocks might be followed by intense geomagnetic activity than during solar minimum. One can extrapolate, for forecasting goals, that during a whole solar cycle a shock has a probability of around 50–60% to be followed by intense/moderate geomagnetic activity.  相似文献   

7.
Rigozo  N.R.  Echer  E.  Vieira  L.E.A.  Nordemann  D.J.R. 《Solar physics》2001,203(1):179-191
A reconstruction of sunspot numbers for the last 1000 years was obtained using a sum of sine waves derived from spectral analysis of the time series of sunspot number R z for the period 1700–1999. The time series was decomposed in frequency levels using the wavelet transform, and an iterative regression model (ARIST) was used to identify the amplitude and phase of the main periodicities. The 1000-year reconstructed sunspot number reproduces well the great maximums and minimums in solar activity, identified in cosmonuclides variation records, and, specifically, the epochs of the Oort, Wolf, Spörer, Maunder, and Dalton Minimums as well the Medieval and Modern Maximums. The average sunspot number activity in each anomalous period was used in linear equations to obtain estimates of the solar radio flux F 10.7, solar wind velocity, and the southward component of the interplanetary magnetic field.  相似文献   

8.
The recent measurements made by satellites of the aurorae in connection with solar phenomena have increased interest in auroral research. In the present investigation, we establish that, for the 20th solar cycle, the occurrence of visual discrete aurorae A, deduced from a complete set of data, is significantly related to the sunspot numbers R z, the number of flares F (of importance 1) the solar wind streams derived from solar coronal holes H, and the geomagnetic index A p.By employing the theory of residues it has been found that A correlates significantly well with the above indices. Accuracies of the order of 75–94% were found for geomagnetic latitudes in the range of 54 –63 N.The A-R zrelationship was investigated in particular for the period 1897–1951. For this period spectrum analysis of A annual values revealed the existence of 3–4 yr and 8–10 yr periodicities of significances 95% and 99%; respectively.Research Associate.  相似文献   

9.
We employ annually averaged solar and geomagnetic activity indices for the period 1960??C?2001 to analyze the relationship between different measures of solar activity as well as the relationship between solar activity and various aspects of geomagnetic activity. In particular, to quantify the solar activity we use the sunspot number R s, group sunspot number R g, cumulative sunspot area Cum, solar radio flux F10.7, and interplanetary magnetic field strength IMF. For the geomagnetic activity we employ global indices Ap, Dst and Dcx, as well as the regional geomagnetic index RES, specifically estimated for the European region. In the paper we present the relative evolution of these indices and quantify the correlations between them. Variations have been found in: i) time lag between the solar and geomagnetic indices; ii) relative amplitude of the geomagnetic and solar activity peaks; iii) dual-peak distribution in some of solar and geomagnetic indices. The behavior of geomagnetic indices is correlated the best with IMF variations. Interestingly, among geomagnetic indices, RES shows the highest degree of correlation with solar indices.  相似文献   

10.
Li  Y.  Luhmann  J. G.  Lynch  B. J.  Kilpua  E. K. J. 《Solar physics》2011,270(1):331-346
Coronal mass ejections (CMEs) carry magnetic structure from the low corona into the heliosphere. The interplanetary CMEs (ICMEs) that exhibit the topology of helical magnetic fluxropes are traditionally called magnetic clouds (MCs). MC fluxropes with axis of low (high) inclination with respect to the ecliptic plane have been referred to as bipolar (unipolar) MCs. The poloidal field of bipolar MCs has a solar cycle dependence. We report a cyclic reversal of the poloidal field of low inclination MC fluxropes during 1976 to 2009. The MC poloidal field cyclic reversal on the same time scale of the solar magnetic cycle is evident over three sunspot cycles. Approximately 48% of ICMEs are MCs, and 40% of IMCs are bipolar MCs during solar cycle 23. The speed of the bipolar MCs has essentially the same distribution as all ICMEs, which implies that they are not from any special type of CMEs in terms of the solar origin. Although CME fluxropes may undergo a number of complications during the eruption and propagation, a significant group of MCs retains sufficient similarity to the source region magnetic field to posses the same cyclic periodicity in polarity reversal. The poloidal field of bipolar MCs gives the out-of-ecliptic-plane field or B z component in the IMF time series. MCs with southward B z field are particularly effective in causing geomagnetic disturbances. During the solar minima, the B z field IMF sequence within MCs at the leading portion of a bipolar MC is the same with the solar global dipole field. Our finding shows that MCs preferentially remove the like polarity of the solar dipole field, and it supports the participation of CMEs in the solar magnetic cycle.  相似文献   

11.
Periodicities in the occurrence rate of solar proton events   总被引:1,自引:0,他引:1  
Power spectral analyses of the time series of solar proton events during the past three solar cycles reveal a periodicity around 154 days. This feature is prominent in all of the cycles combined, cycles 19 and 21 individually but is only weak in cycle 20. These results are consistent with the presence of similar periodicities between 152 and 155 days in the occurrence rate of major solar flares, the sunspot blocking function (P s ), the 10.7 cm radio flux (F 10.7) and the sunspot number (R z ). This suggests that the circa 154-days periodicity may be a fundamental characteristic of the Sun. Periods around 50–52 days are also found in the combined data set and in the three individual cycles in general agreement with the detection of this periodicity in major flares in cycle 19 and inP s ,F 10.7, andR z in cycle 21. The cause of the 155 day period remains unknown. The spectra contain lines (or show power at frequencies) consistent with a model in which the periodicity is caused by differential rotation of active zones and a model in which it is related to beat frequencies between solar oscillations, as proposed by Wolff.  相似文献   

12.
The problem of solar wind-magnetosphere coupling is investigated for intense geomagnetic storms (Dst < -100nT) that occurred during solar cycle 23. For this purpose interplanetary plasma and field data during some intensely geo-effective transient solar/interplanetary disturbances have been analysed. A geomagnetic index that represents the intensity of planetary magnetic activity at subauroral latitude and the other that measures the ring current magnetic field, together with solar plasma and field parameters (V, B, Bz, σB, N, and T) and their various derivatives (BV,-BVz, BV2, -BzV2, B2V, Bz2V, NV2) have been analysed in an attempt to study mechanism and the cause of geo-effectiveness of interplanetary manifestations of transient solar events. Several functions of solar wind plasma and field parameters are tested for their ability to predict the magnitude of geomagnetic storm.  相似文献   

13.
The monthly probability of occurrence of southward (B z ) component of IMF estimated independent of the sector polarity observed near earth is found to change with the magnitude of solar wind velocity. The above analysis is done for each month during two years around sunspot minima and maxima in cycle 21. The results will be interpreted in terms of association of southwardB z events with solar wind flows of distinct solar origin such as low and high speed solar wind.  相似文献   

14.
The large-scale structure of the solar magnetic field during the past five sunspot cycles (representing by implication a much longer interval of time) has been investigated using the polarity (toward or away from the Sun) of the interplanetary magnetic field as inferred from polar geomagnetic observations. The polarity of the interplanetary magnetic field has previously been shown to be closely related to the polarity (into or out of the Sun) of the large-scale solar magnetic field. It appears that a solar structure with four sectors per rotation persisted through the past five sunspot cycles with a synodic rotation period near 27.0 days, and a small relative westward drift during the first half of each sunspot cycle and a relative eastward drift during the second half of each cycle. Superposed on this four-sector structure there is another structure with inward field polarity, a width in solar longitude of about 100° and a synodic rotation period of about 28 to 29 days. This 28.5 day structure is usually most prominent during a few years near sunspot maximum. Some preliminary comparisons of these observed solar structures with theoretical considerations are given.  相似文献   

15.
The previously established connection between the occurence of AQDs (“abnormal quiet days” when the phase of the solar diurnal variation of horizontal magnetic field, Sq(H), at a mid-latitude northern hemisphere station is anomalous) at sunspot minimum and the magnitude of the following sunspot maximum is examined in the light of our recent improved understanding of the nature and cause of AQDs. A small contribution to the relationship is found to arise from variations from cycle to cycle in the additional northward field which is characteristic of AQDs and leads to a reduced Sq(H) amplitude at stations poleward of the Sq focus. However, the main factor which determines the connection is a variation from one sunspot minimum to another of the amplitude of the small southward bay-like field perturbations which constitute the AQD events, and evidence is presented which suggests that this parameter may be quantitatively related to the extent of southward swing of the Bz component of the interplanetary magnetic field which determines the energy transfer from the solar wind into the magnetospheric tail. It thus appears that the magnitude of southward swing in Bz might be another solar parameter which anticipates the size of a forthcoming sunspot cycle during its build-up over the declining phase of the previous cycle and at the minimum.  相似文献   

16.
This paper analyzes the time changes of the common oscillations of the spectra of the absolute value of the interplanetary magnetic field measured at the Earth’s orbit from 1964 to 1997 and of solar activity (the Wolf sunspot numbers). The frequency components of the spectra were determined using the method of nonlinear spectral analysis. Oscillations with common periods of T = 10.8, T = 8.8, and T = 3.73 years have been identified in the long-period part of the spectra, and their temporal variations are shown. We discuss the specific features of the spectral band in the short-period part of the spectra in the vicinity of the known periods of T ~ 1.3 years and T ~ 150 days that have been identified earlier in the solar data and in the solar wind parameters.  相似文献   

17.
Duhau  S. 《Solar physics》2003,213(1):203-212
A non-linear coupling function between sunspot maxima and aa minima modulations has been found as a result of a wavelet analysis of geomagnetic index aa and Wolf sunspot number yearly means since 1844. It has been demonstrated that the increase of these modulations for the past 158 years has not been steady, instead, it has occurred in less than 30 years starting around 1923. Otherwise sunspot maxima have oscillated about a constant level of 90 and 141, prior to 1923 and after 1949, respectively. The relevance of these findings regarding the forecasting of solar activity is analyzed here. It is found that if sunspot cycle maxima were still oscillating around the 141 constant value, then the Gnevyshev–Ohl rule would be violated for two consecutive even–odd sunspot pairs (22–23 and 24–25) for the first time in 1700 years. Instead, we present evidence that solar activity is in a declining episode that started about 1993. A value for maximum sunspot number in solar cycle 24 (87.5±23.5) is estimated from our results.  相似文献   

18.
The Return Flux (RF) sunspot model (Osherovich, 1982) imposes a restriction on the value of the vertical gradient of the magnetic field, dB/dz, analogous to a restriction implied by the self-similar sunspot model of Schlüter and Temesvary (ST). The maximum value of the gradient, (dB/dz)max, is shown to be 10% smaller in the RF model than in the ST model. The dependence of (dB/dz)max on the sunspot radius is predicted.  相似文献   

19.
Long-term variation in the distribution of the solar filaments observed at the Observatorie de Paris, Section de Meudon from March 1919 to December 1989 is presented to compare with sunspot cycle and to study the periodicity in the filament activity, namely the periods of the coronal activity with the Morlet wavelet used. It is inferred that the activity cycle of solar filaments should have the same cycle length as sunspot cycle, but the cycle behavior of solar filaments is globally similar in profile with, but different in detail from, that of sunspot cycles. The amplitude of solar magnetic activity should not keep in phase with the complexity of solar magnetic activity. The possible periods in the filament activity are about 10.44 and 19.20 years. The wavelet local power spectrum of the period 10.44 years is statistically significant during the whole consideration time. The wavelet local power spectrum of the period 19.20 years is under the 95% confidence spectrum during the whole consideration time, but over the mean red-noise spectrum of α = 0.72 before approximate Carrington rotation number 1500, and after that the filament activity does not statistically show the period. Wavelet reconstruction indicates that the early data of the filament archive (in and before cycle 16) are more noiseful than the later (in and after cycle 17).  相似文献   

20.
The following sunspot formation indices are analyzed: the relative sunspot number R z, the normalized sunspot group number R g, and the total sunspot area A. Six empirical formulas are derived to describe the relations among these indices after 1908. The earlier data exhibit systematic deviations from these formulas, which can be attributed to systematic errors of the indices. The Greenwich data on the sunspot total area A and the sunspot group number in 1874–1880 are found to be doubtful. Erroneous data at the beginning of the Greenwich series must spoil the values of the index R g in the XVII–XIX centuries. The Hoyt-Schatten series of R g may be less reliable than the well-known Wolf number series R z.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号