首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
Boundary-Layer Meteorology - The Obukhov length, although often adopted as a characteristic scale of the atmospheric boundary layer, has been introduced purely based on a dimensional argument...  相似文献   

2.
Ruping Mo  Hai Lin 《大气与海洋》2013,51(3):208-232
ABSTRACT

A detailed analysis is performed on an inland-penetrating atmospheric river (AR) driven by and coupled to a Colorado cyclone in the first week of February 2016. This winter weather system was initiated by a trough of low pressure moving across the Rocky Mountains from the California coast. The low-level jet ahead of the trough was capable of extracting water vapour from the Gulf of Mexico to feed a cyclone on the lee side of the Rocky Mountaains, and the jet stream eventually transformed into a powerful AR. The warm, moist flow from the south produced a narrow band of heavy precipitation along the major axis of the AR across the central and eastern United States and generated significant freezing rain in parts of the northeastern United States and eastern Canada as the AR flowed over the warm front. It is suggested that, in an operational weather forecasting and warning environment, ARs can be easily identified by using the vertically integrated horizontal water vapour transport, and the major AR contribution to heavy precipitation can be estimated from the horizontal moisture convergence. It is demonstrated that the AR analysis in this case can assist operational meteorologists in understanding and conceptualizing winter storm development and the associated high-impact weather pattern. The operational predictability of this winter storm and its possible teleconnection with the Madden–Julian Oscillation (MJO) are also investigated. Our lagged composite analysis reveals that a statistically significant increase in water vapour transport from the Gulf of Mexico over the North American continent could occur about 10–20 days after the MJO-related convection anomaly reaches the tropical Indian Ocean.  相似文献   

3.
An extended Lagrangian stochastic dispersion model that includes time variations of the turbulent kinetic energy dissipation rate is proposed. The instantaneous dissipation rate is described by a log-normal distribution to account for rare and intense bursts of dissipation occurring over short durations. This behaviour of the instantaneous dissipation rate is consistent with field measurements inside a pine forest and with published dissipation rate measurements in the atmospheric surface layer. The extended model is also shown to satisfy the well-mixed condition even for the highly inhomogeneous case of canopy flow. Application of this model to atmospheric boundary-layer and canopy flows reveals two types of motion that cannot be predicted by conventional dispersion models: a strong sweeping motion of particles towards the ground, and strong intermittent ejections of particles from the surface or canopy layer, which allows these particles to escape low-velocity regions to a high-velocity zone in the free air above. This ejective phenomenon increases the probability of marked fluid particles to reach far regions, creating a heavy tail in the mean concentration far from the scalar source.  相似文献   

4.
Ju  Tingting  Wu  Bingui  Zhang  Hongsheng  Wang  Zhaoyu  Liu  Jingle 《Boundary-Layer Meteorology》2022,183(3):469-493
Boundary-Layer Meteorology - The precise cause of PM2.5 (fine particular matter with a diameter smaller than 2.5 μm) explosive growth and the contribution of intermittent turbulence...  相似文献   

5.
6.
In this part, the temporal evolution and interaction across the equator of 30-50 day oscillation in the atmosphere are investigated further. The annual variation of 30-50 day oscillation is quite obvious in the mid-high latitudes. In the tropical atmosphere, the obvious interannual variation is an important property for temporal evolution of 30-50 day oscillation. The low-frequency wavetrain across the equator over the central Pacific and central Atlantic area, the movement of the long-lived low-frequency system across the equator and the meridional wind component across the equator will obviously show the interaction of 30-50 day oscillation in the atmosphere across the equator.  相似文献   

7.
The Tibetan Plateau(TP) is a key area affecting forecasts of weather and climate in China and occurrences of extreme weather and climate events over the world. The China Meteorological Administration, the National Natural Science Foundation of China, and the Chinese Academy of Sciences jointly initiated the Third Tibetan Plateau Atmospheric Science Experiment(TIPEX-Ⅲ) in 2013, with an 8–10-yr implementation plan. Since its preliminary field measurements conducted in 2013, routine automatic sounding systems have been deployed at Shiquanhe, Gaize, and Shenzha stations in western TP, where no routine sounding observations were available previously. The observational networks for soil temperature and soil moisture in the central and western TP have also been established. Meanwhile, the plateau-scale and regional-scale boundary layer observations, cloud–precipitation microphysical observations with multiple radars and aircraft campaigns, and tropospheric–stratospheric air composition observations at multiple sites, were performed. The results so far show that the turbulent heat exchange coefficient and sensible heat flux are remarkably lower than the earlier estimations at grassland, meadow, and bare soil surfaces of the central and western TP. Climatologically, cumulus clouds over the main body of the TP might develop locally instead of originating from the cumulus clouds that propagate northward from South Asia. The TIPEX-Ⅲ observations up to now also reveal diurnal variations, macro-and microphysical characteristics, and water-phase transition mechanisms, of cumulus clouds at Naqu station. Moreover, TIPEX-Ⅲ related studies have proposed a maintenance mechanism responsible for the Asian "atmospheric water tower" and demonstrated the effects of the TP heating anomalies on African, Asian, and North American climates. Additionally, numerical modeling studies show that the Γ distribution of raindrop size is more suitable for depicting the TP raindrop characteristics compared to the M–P distribution, the overestimation of sensible heat flux can be reduced via modifying the heat transfer parameterization over the TP, and considering climatic signals in some key areas of the TP can improve the skill for rainfall forecast in the central and eastern parts of China. Furthermore, the TIPEX-Ⅲ has been promoting the technology in processing surface observations, soundings, and radar observations, improving the quality of satellite retrieved soil moisture and atmospheric water vapor content products as well as high-resolution gauge–radar–satellite merged rainfall products, and facilitating the meteorological monitoring, forecasting, and data sharing operations.  相似文献   

8.
In scintillometry Monin–Obukhov similarity theory (MOST) is used to calculate the surface sensible heat flux from the structure parameter of temperature (CT2){(C_{T^2})} . In order to prevent saturation a scintillometer can be installed at an elevated level. However, in that case the observation level might be located outside the atmospheric surface layer (ASL) and thus the validity of MOST questioned. Therefore, we examine two concepts to determine the turbulent surface sensible heat flux from the structure parameter at elevated levels with data obtained at 60-m height on the Cabauw tower (the Netherlands). In the first concept (MOSTs) CT2{C_{T^2}} is still scaled with the surface flux, whereas in the second (MOSTl) CT2{C_{T^2}} is scaled with the local sensible heat flux. The CT2{C_{T^2}} obtained from both concepts is compared with direct observations of CT2{C_{T^2}} using a sonic anemometer/thermometer. In the afternoon (when the measurement height is located within the ASL) both concepts give results that are comparable to the directly observed values of CT2{C_{T^2}} . In the morning (data outside the ASL), our data do not unequivocally support either of the two concepts. First, the peak in CT2{C_{T^2}} that occurs when the measurement height is located in the entrainment zone disqualifies the use of MOST. Second, during the morning transition, local scaling shows the correct pattern (zero flux and a minimum in CT2{C_{T^2}}) but underestimates CT2{C_{T^2}} by a factor of ten. Third, from the best linear fit a we found that the slope of MOSTl gave better results, whereas the offset is closer to zero for MOSTs. Further, the correlation between the direct observations and MOST-scaled results is low and similar for the two concepts. In the end, we conclude that MOST is not applicable for the morning hours when the observation level is above the ASL.  相似文献   

9.
In this study, we analyzed the dynamical evolution of the major 2012–2013 Northern Hemisphere(NH)stratospheric sudden warming(SSW) on the basis of ERA-Interim reanalysis data provided by the ECMWF.The intermittent upward-propagating planetary wave activities beginning in late November 2012 led to a prominent wavenumber-2 disturbance of the polar vortex in early December 2012. However, no major SSW occurred. In mid December 2012, when the polar vortex had not fully recovered, a mixture of persistent wavenumber-1 and-2 planetary waves led to gradual weakening of the polar vortex before the vortex split on 7 January 2013. Evolution of the geopotential height and Eliassen-Palm flux between 500 and 5 hPa indicates that the frequent occurrence of tropospheric ridges over North Pacific and the west coast of North America contributed to the pronounced upward planetary wave activities throughout the troposphere and stratosphere. After mid January 2013, the wavenumber-2 planetary waves became enhanced again within the troposphere, with a deepened trough over East Asia and North America and two ridges between the troughs. The enhanced tropospheric planetary waves may contribute to the long-lasting splitting of the polar vortex in the lower stratosphere. The 2012–2013 SSW shows combined features of both vortex displacement and vortex splitting. Therefore, the anomalies of tropospheric circulation and surface temperature after the2012–2013 SSW resemble neither vortex-displaced nor vortex-split SSWs, but the combination of all SSWs.The remarkable tropospheric ridge extending from the Bering Sea into the Arctic Ocean together with the resulting deepened East Asian trough may play important roles in bringing cold air from the high Arctic to central North America and northern Eurasia at the surface.  相似文献   

10.
Flow and turbulence above urban terrain is more complex than above rural terrain, due to the different momentum and heat transfer characteristics that are affected by the presence of buildings (e.g. pressure variations around buildings). The applicability of similarity theory (as developed over rural terrain) is tested using observations of flow from a sonic anemometer located at 190.3 m height in London, U.K. using about 6500 h of data. Turbulence statistics—dimensionless wind speed and temperature, standard deviations and correlation coefficients for momentum and heat transfer—were analysed in three ways. First, turbulence statistics were plotted as a function only of a local stability parameter z/Λ (where Λ is the local Obukhov length and z is the height above ground); the σ i /u * values (i = u, v, w) for neutral conditions are 2.3, 1.85 and 1.35 respectively, similar to canonical values. Second, analysis of urban mixed-layer formulations during daytime convective conditions over London was undertaken, showing that atmospheric turbulence at high altitude over large cities might not behave dissimilarly from that over rural terrain. Third, correlation coefficients for heat and momentum were analyzed with respect to local stability. The results give confidence in using the framework of local similarity for turbulence measured over London, and perhaps other cities. However, the following caveats for our data are worth noting: (i) the terrain is reasonably flat, (ii) building heights vary little over a large area, and (iii) the sensor height is above the mean roughness sublayer depth.  相似文献   

11.
We discuss the results of Gibson and Sailor (Boundary-Layer Meteorol 145:399–406, 2012) who suggest several corrections to the mathematical formulation of the Lagrangian particle dispersion model of Rotach et al. (Q J R Meteorol Soc 122:367–389, 1996). While most of the suggested corrections had already been implemented in the 1990s, one suggested correction raises a valid point, but results in a violation of the well-mixed criterion. Here we improve their idea and test the impact on model results using a well-mixed test and a comparison with wind-tunnel experimental data. The new approach results in similar dispersion patterns as the original approach, while the approach suggested by Gibson and Sailor leads to erroneously reduced concentrations near the ground in convective and especially forced convective conditions.  相似文献   

12.
What drives the development of climate policy? Brazil, China, and India have all changed their climate policies since 2000, and single-case analyses of climate policymaking have found that all three countries have had climate coalitions working to promote climate policies. To what extent have such advocacy coalitions been able to influence national policies for climate-change mitigation, and what can explain this? Employing a new approach that combines the advocacy coalition framework (ACF) with insights from comparative environmental politics and the literature on policy windows, this paper identifies why external parameters like political economy and institutional structures are crucial for explaining the climate advocacy coalitions’ ability to seize policy windows and influence policy development. We find that the coalitions adjust their policy strategies to the influence-opportunity structures in each political context—resulting in confrontation in Brazil, cooperation in China, and a complementary role in India.  相似文献   

13.
14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号