首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Wave data derived from radar altimeters carried on four satellite missions are combined into a wave climatology for New Zealand waters. These data provide extensive observations of wave conditions around New Zealand, where the paucity of measurements has previously hindered definition of the wave climate. The data span the period 1985 to the present with the exception of a 2‐year gap in 1989–91. The spatial distribution of the long‐term mean of significant wave heights (SWH) indicates a strong latitudinal variation in the south‐west Pacific, with values of over 4 m at latitudes of 50–60°S and under 2.5 m towards the tropics. The shadowing of New Zealand is quite marked; a result of the dominant contribution of south‐westerly wave events. The annual range of the mean SWH also varies over the region; within 0.6 m in the north and 1.3 m in the south. A principal component analysis of the monthly anomalies in mean SWH identifies spatial patterns of variation. Some components vary with the local wind more than others suggesting that some anomalies are associated with wind sea and some with swell. Some patterns also appear to vary with the Southern Oscillation Index and can be related to the wind anomalies associated with El Nino events. Frequency distributions of SWH are also determined, and it is noted that in the north of the region the spatial pattern of the high waves differs considerably from the means.  相似文献   

2.
The wave climate at the Maui site off the west coast of the North Island and off the east coast of Great Barrier Island to the east of the North Island are examined. This is done by means of average wave spectra derived from a 2‐year database, acquired from Waverider buoy measurements made over 1980 and 1981. The average spectra provide information about the individual sea states which characterise the wave climate, and show that on average the sea state on the east coast is less energetic than it is on the west coast. Further, it is seen that this difference results largely from a dominant and persistent long‐period south‐westerly swell of 12.4 s period which is present at the Maui location but absent from the Great Barrier Island seas.  相似文献   

3.
Results are presented from the deployment of three bottom-mounted instrumentation systems in water depths of 6–9 m on the sandy inner shelf of Louisiana, USA. The 61-day deployment included nine cold front passages that were associated with large increases in wind speed. Two of the most energetic cold front passages were characterized by distinct meteorological, hydrodynamic, bottom boundary layer, and sedimentary responses and may potentially be treated as end-member types on a continuum of regional cold front passages. Arctic surges (AC storms) have a very weak pre-frontal phase followed by a fairly powerful post-frontal phase, when northeasterly winds dominate. Migrating cyclones (MC storms) are dominated by a strong low-pressure cell and have fairly strong southerly winds prior to the frontal passage, followed by strong northwesterly winds.

On the basis of measurements taken during this study, AC storms are expected to have a lower average significant wave height than MC storms and are dominated by short-period southerly waves subsequent to the frontal passage. Currents are weak and northerly during the pre-frontal phase, but become very strong and southwesterly following the passage. Sediment transport rate during AS storms was not as high as during MC storms, and the mean and overall direction tended to be southwesterly to westerly, with low-frequency flows producing easterly transport, and wind-wave flows producing southeasterly transport.

MC storms had the most energetic waves of any storm type, with peaks in significant wave height occurring during both the pre- and post-frontal phases. The wave field during MC storms tended to be more complex than during AS storms, with an energetic, northerly swell band gradually giving way to a southerly sea band as the post-frontal phase progressed. Currents during MC storms were moderate and northerly during the pre-frontal phase, but became much stronger and southeasterly during the post-frontal phase. Shear velocity was high during both the pre- and post-frontal phases of the storm, although sediment transport was highest following the frontal passage. Mean and overall sediment transport was directed southeasterly during MC storms, with low-frequency and wind-wave flows producing northerly transport. In summary, the data sets presented here are unique and offer insight into the morphosedimentary dynamics of mid-latitude, micro-tidal coasts during extratropical storms.  相似文献   


4.
A two-year series of directional wave measurement off the Eastern Mediterranean coast of Israel reveals an abundance of high storm waves. Some of these waves have significant height in excess of 5 meters and periods as long as 15 sec.The evolution of the storm waves is described and related to the growth and paths of the storm fronts in Mid-Mediterranean. Shorter-period waves are found to always lead the arrival of longer-period swell. This characteristic is explained by a short decay distance and/or a high migration velocity of the storm front.The scatter plot of significant wave height vs period for the recorded events of each storm describes an open-loop time sequence. The difference in period between that of the peak height event and the period of a fully arisen sea of the same height is found to be indicative of the true decay distance the waves have travelled.  相似文献   

5.
This study analyses a 4.5 year (September 2009–March 2014) time-series of remotely-sensed data of altimeter significant wave heights to describe the temporal and spatial variability of ocean swells along the northern coast of the Gulf of Guinea. The NOAA WAVEWATCH III (NWW3) wave model data were used with altimeter data to determine the origin of the swells that occur along the coast of Côte d'Ivoire in West Africa. We show that the ocean swells along the northern coast of the Gulf of Guinea are generated in the Southern Ocean and then propagate from south to north in the South Atlantic Ocean, before turning south-west to north-east close to the coast. This finding corroborates previous studies in this area. The remotely-sensed and NWW3 significant wave height data captured the strong swells observed along the coast of Côte d'Ivoire from the period 28 August–3 September 2011, which were responsible for an extreme erosion event of more than 12?m along that country's coastline. This extreme event was triggered by a strong storm in the region between 40° and 60° S that occurred eight days previously in the South Atlantic. The waves propagated as swells at a speed of about 875?km day–1 before reaching the northern African coast.  相似文献   

6.
海南岛西部岸外沙波的高分辨率形态特征   总被引:12,自引:1,他引:12  
利用SIMRAD-EM3000多波束探测系统和DGPS定位系统,对海南岛东方岸外的沙波沙脊区进行了高精度探测,分析结果表明:从海岸到陆架底形具有明显的分带性,依次出现弱侵蚀底形段、沙波沙脊底形段和平坦底形段。沙波仅发育于沙波沙脊段,介于水深20~50 m之间,沙波形态有二维与三维两种,沙波波高多为0.7~2.5 m,波长20~70 m,沙波指数(L/H)为20~60,对称指数为1~3;沙波沙脊区沉积物的搬运方向有明显的规律性,在沙脊的西侧,沉积物主要向北搬运;在沙脊的东侧,沉积物主要向南搬运;沙波的形成和发育主要受潮流场控制,热带风暴对其有改造作用。  相似文献   

7.
Large sections of the western Irish coast are characterised by a highly compartmentalised series of headland-embayment cells in which sand and gravel beaches are backed by large vegetated dune systems. Exposure to modally high-energy swell renders most of these beaches dissipative in character. A mesotidal range (c. 3.5–4.5 m) exists along much of the coast. Analysis of instrumental wind records from three locations permitted the identification of a variety of storm types and the construction of storm catalogues. Few individual storms were recorded at all three stations indicating a lack of regional consistency in storm record. Of the total storms recorded, only a small percentage are potentially damaging (onshore directed) and even fewer span a high tide and thus potentially induce a measurable morphological response at the coast.

Through a combination of historical records, meteorological records, field observations and wave modelling we attempt to assess the impact of storms. Quantifiable records of coastal morphology (maps, air photos and beach profiles) are few in number and do not generally record responses that may be definitely attributed to specific storms. Numerical wave simulations and observations at a variety of sites on the west Irish coast, however, provide insights into instantaneous and medium term (decadal) storm responses in such systems.

We argue that beaches and dunes that are attuned to modally high-energy regimes require extreme storms to cause significant morphological impact. The varying orientation of beaches, a spatially nonuniform storm catalogue and the need for a storm to occur at high water to produce measurable change, impart site-specific storm susceptibility to these embayments. Furthermore, we argue that long-period wave energy attenuation across dissipative shorefaces and beaches reduces coastal response to distant storms whereas short-period, locally generated wind waves are more likely to cause major dune and beach erosion as they arrive at the shoreline unrefracted.

This apparently variable response of beach and dune systems to storm forcing at a decadal scale over a coastline length of 200 km urges caution in generalising regarding regional-scale coastal responses to climatic change.  相似文献   


8.
The main sill of the Strait of Gibraltar (Camarinal Sill) is an area of very energetic internal wave activity. The highest amplitude internal wave is the well-known internal bore, generated at critical conditions over Camarinal Sill. A very energetic lee wave has recently been found and reported. This occurs in neap tides when favorable combination of the stratification, vertical profile of horizontal background velocity, and bottom topography determines its generation. When the lee wave is developed the manifestation of high-amplitude internal waves is observed at the sea surface as high-frequency chaotic oscillations, named boiling waters. We analyze the generation of the lee wave over the main sill of Gibraltar Strait on the basis of the data from a ship mounted ADCP, multi-probe CTD data taken during a survey carried out in November 1998, and the numerical solution of the Taylor–Goldstein equation for the prevailing hydraulic conditions previous to its generation. Stratification is computed from CTD data, and the tidal current prediction is made from the 2 years of ADCP hourly data at Camarinal Sill gathered during the Gibraltar Experiment 94-96. The main characteristic is that they happen during neap tides, and their magnitude is comparable to the internal bore generated during spring tides. The classical internal bore and the lee waves are different phenomena, and the presence of the latter is an indicator of minimum flow over Camarinal Sill. A prediction model for lee waves based on the tidal hydrodynamic conditions is also developed.  相似文献   

9.
郇彩云 《海洋工程》2024,(2):148-156
利用东矶列岛海域一年实测波浪资料,统计分析波要素特征,以台风“利奇马”为例,分析台风浪演变过程。结果表明:研究海域年平均有效波高0.88 m,年平均周期4.3 s,年最大波高8.67 m出现在夏季台风“利奇马”影响时。研究海域以轻浪为主,其次是小浪和中浪;常浪向为ESE,次常浪向为E和SE;强浪向为SSE,次强浪向为SE。波浪平均持续时间和波高之间符合指数衰减关系。台风“利奇马”影响期间,最大谱峰56.20 m2/Hz,台风浪谱型以双峰谱为主,台风浪类型经历了涌浪—混合浪—风浪—混合浪—涌浪这一演变过程。  相似文献   

10.
11.
The presence and movement of Indo-Pacific bottlenose dolphins Tursiops aduncus were investigated using shore-based observations made during a humpback whale Megaptera novaeangliae migration survey at Cape Vidal, South Africa, undertaken between June and October 1988–1991. Occurrence was analysed as counts of dolphin sightings per hour within a generalised estimating equation framework. Bottlenose dolphin sightings decreased throughout the daily survey period, and there was a small seasonal peak in sightings during August. Data on movement trajectory were collected using a theodolite for 60% of the groups of dolphins sighted. Most groups were observed travelling in a northerly direction, with few groups recorded moving south. A generalised linear model indicated that northward-travelling dolphins were located closer to shore, travelled at higher speeds, and occurred in bigger groups under low-tide conditions, than those seen moving in a southerly direction. The southward-flowing Agulhas Current is close to shore at Cape Vidal, where the continental shelf is particularly narrow. We suggest that bottlenose dolphins in this area have adopted a specific movement regime to cope with the consistent fast-flowing currents that dominate their environment at Cape Vidal.  相似文献   

12.
厦门岛海滩剖面对9914号台风大浪波动力的快速响应   总被引:17,自引:1,他引:17  
根据 9914号台风发生前后对厦门岛滨岸海滩剖面地形的重复测量结果及有关台风要素和潮位的实测资料 ,探讨了台风袭击厦门岛期间海滩的变形特征和侵蚀状态。分析得出 ,海滩地形受台风暴浪冲击普遍发生急剧变化。横向冲淤变形以东岸海滩为最剧烈 :滩肩蚀退可达 2 5m ;滩面呈上冲下淤 ,上段和滩肩的单宽冲蚀量达 30m3 /m ;下段单宽淤积量达 17m3 /m ;剖面类型由滩肩式断面向沙坝式断面转变。这种变形特点是在台风大浪波动力和潮位暴涨的双重作用下造成的。台风期间 ,沿岸输沙能力以北岸最高 ,南岸次之 ,东岸较低 ;且自南岸到东岸 ,随着沿岸输沙量减少 ,横向变形相应有增大的趋势。这是9914号台风以偏东方向袭击厦门的结果。表明不同方向海岸岸滩地形对同一台风大浪波动力作用具有不同响应特征。  相似文献   

13.
Hoki (Macruronus novaezelandiae Hector) year class strength (YCS) varies substantially from year to year. We examined associations between YCS and climate variables including the Southern Oscillation Index (SOI), satellite sea surface temperatures (SSTs), synoptic weather patterns, wind speeds, and the depth of the west coast, South Island, New Zealand, mixed layer. We evaluated the predictions of a model developed 2 years ago to predict YCS of the western and eastern New Zealand hoki stocks from similar climate variables. New predictive models were developed using updated data. Strong year classes of the western hoki stock were associated with cooler SSTs, a negative SOI, and westerly or south‐westerly flow along the west coast of the South Island. We accordingly predict a moderately strong 1997 year class and weak 1998 and 1999 year classes for the western stock of hoki. The current model cannot predict eastern stock year class strengths with confidence.  相似文献   

14.
岬湾相间的琼州海峡南岸在海岸动力条件作用下,岸滩发生侵蚀或堆积,特别是南岸中部的南渡江三角洲沿岸岸滩演变剧烈。该文从海岸动力地貌的角度,对琼州海峡南岸的海岸动力特征、泥沙运动以及岸滩演变进行分析。根据海峡南部三维潮流场数值模拟结果,结合经验公式初步分析潮流引起的泥沙运移速率和方向,得到岸外水域总的泥沙运移趋势为从西向东。根据波浪动力计算分析沿岸泥沙运移,探讨沙质岸滩的动态与地貌演变之间的关系,得出海峡南岸海岸地貌演变与盛行的NE和NNE向风浪有密切关系,岸滩的演变过程主要受制于这两个方向的风浪及其引起的泥沙沿岸运移。  相似文献   

15.
基于SWAN波浪传播模型建立包含风暴潮与天文潮耦合传播的台风浪数值模型,将1949年以来登陆我国大陆沿海最强的5612#台风作为典型的超强台风,计算了超强台风沿中线和北线路径登陆遭遇天文潮高潮位时产生的沿海波高过程。结果显示:河口波高总体分布下游大于上游,北岸大于南岸,两岸代表断面堤前最大有效波高可达5.5 m;中线路径生成的近岸台风浪波高为单峰过程,北线路径时北岸的波高出现双峰过程,波高峰值与风暴高潮位并非总是同步出现,两者时间差最大为4 h;根据频率曲线分析,中线、北线路径超强台风作用下乍浦站台风浪的重现期分别为135 a和350 a;中潮时的近岸台风浪波高比大潮降低0.1~0.2 m,小潮时再比中潮降低同样幅度。这些结论对海堤工程设计和防灾减灾具有重要意义。  相似文献   

16.
An instrumented field study of the across-shore evolution of wave characteristics was conducted under wind-wave and swell-wave conditions on a sloping type B shore platform along the mesotidal, fetch-limited coast of Auckland, New Zealand, based on spectral analysis of hydrodynamic data recorded in pressure-sensor time series during a 24-h deployment on 24–25 November 2008. The results highlight the ability of the shore platform in dissipating wave energy reaching the cliff toe under wind-wave and swell-wave conditions, and the spectral redistribution of wave energy. As waves propagated onto the platform surface and towards the cliff toe, infragravity-wave energy became progressively more dominant, while gravity waves were dissipated. Wave height and period in the central sector of the platform and at the cliff toe were not markedly affected by differences in incident-wave conditions observed during the survey. The findings confirm the importance of platform morphology in modulating wave-energy delivery to the cliff toe. In contrast to previous studies, infragravity-wave height at the cliff toe did not appear to be correlated to incident-wave conditions.  相似文献   

17.
Coastline sand waves have been observed at “El Puntal” spit, located on the north coast of Spain. The spit has been monitored by an Argus video system since 2003 and the formation and destruction of sand waves has been observed. Coastline data from the video images are analyzed by means of principal components analysis, obtaining a mean sand wave length of 125–150 m and a maximum amplitude of ≈ 15 m. It is also observed that sand waves reach their maximum amplitude at about 15 days. No propagation of these sand waves is noticed during the approximately two-month-long events analyzed. Sand wave formation and evolution are examined in relation with the prevailing local wave conditions during that period. Incident waves at the west end of the spit approach from the east–northeast, with a very high angle with respect to the shoreline. Field observations suggest that sand waves may result from an instability in alongshore sediment transport caused by moderate-energy waves with a high-angle incidence.  相似文献   

18.
Deposits of the two strongest tsunamis of the 20th century have been found on the eastern coast of Primorye. The tsunamis had epicenters in the Sea of Japan west of the coast of Hokkaido. The distribution and preservation of deposits in bays of different geomorphological structure have been analyzed. The best defined sedimentary covers occur in the upper part of sections in low-lying areas of bay shores, where the wave runup was more than 3 m. The best preserved deposits have been observed in bays attributed to loworder streams. Variations of the structural composition of tsunami deposits formed by traction processes associated with the tsunamis have been analyzed depending on distance from the shoreline; the sources of material have been identified. Tsunami waves transported sand not only from beaches, ancient storm ridges, and terraces, but also from the underwater coastal slope; waves also grabbed material from estuarine lagoons and lakes located in the shore inundation zone. Deposits include marine diatoms with dominant sublittoral planktonic and benthic species, which suggests that the material was transported from a depth no more than 15 m. Deep-sea species of diatoms and their fragments have been encountered. Among freshwater diatoms are species with different ecological identities, indicating erosion and redeposition of material transported from various sources.  相似文献   

19.
The observed variability of the Kelvin waves and their propagation in the equatorial wave guide of the Indian Ocean and in the coastal wave guides of the Bay of Bengal (BoB) and the southeastern Arabian Sea (AS) on seasonal to interannual time scales during years 1993–2006 is examined utilizing all the available satellite and in-situ measurements. The Kelvin wave regime inferred from the satellite-derived sea surface height anomalies (SSHA) shows a distinct annual cycle composed of two pairs of alternate upwelling (first one occurring during January–March and the second one occurring during August–September) and downwelling (first one occurring during April–June and the second one occurring during October–December) Kelvin waves that propagate eastward along the equator and hit the Sumatra coast and bifurcate. The northern branches propagate counterclockwise over varied distances along the coastal wave guide of the BoB. The potential mechanisms that contribute to the mid-way termination of the first upwelling and the first downwelling Kelvin waves in the wave guide of the BoB are hypothesized. The second downwelling Kelvin wave alone reaches the southeastern AS, and it shows large interannual variability caused primarily by similar variability in the equatorial westerly winds during boreal fall. The westward propagating downwelling Rossby waves triggered by the second downwelling Kelvin wave off the eastern rim of the BoB also shows large interannual variability in the near surface thermal structure derived from SODA analysis. The strength of the equatorial westerlies driven by the east–west gradient of the heat sources in the troposphere appears to be a critical factor in determining the observed interannual variability of the second downwelling Kelvin wave in the wave guides of the equatorial Indian Ocean, the coastal BoB, and the southeastern AS.  相似文献   

20.
This study focuses on barred beach shoreface nourishments physically simulated in a wave flume. The attack of a schematic storm on three different nourishments is analysed. The apex and waning storm phases lead respectively to offshore and onshore sediment transports. Nourishments in the trough and on the outer bar feed the bar and increase wave dissipation offshore. The bar acts as a wave filter and reduces shore erosion (lee effect). In contrast, nourishment on the beach face leads mostly to shore feeding and reconstruction (feeder effect). With successive nourishments, the beach face clearly becomes steeper and onshore sediment transport is reduced during moderate wave climates. The surface grain size analysis reveals marked variations. Coarser sediments are sorted on the bar and the upper beach face. These locations correspond to large wave dissipation zones during the storm apex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号