首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cylindrospermopsis raciborskii is a planktonic freshwater cyanobacterium that is becoming increasingly prevalent in water bodies worldwide. During a survey of toxic cyanobacteria in New Zealand, C. raciborskii was identified in a sample collected from Lake Waahi (Waikato). This is the first identification of this species in New Zealand. Liquid chromatography‐mass spectrometry and liquid chromatography‐tandem mass spectrometry were used to confirm the presence of the cyanotoxins cylindrospermopsin (CYN) and deoxy‐cylindrospermopsin (do‐CYN). Detection of CYN and do‐CYN demonstrates that C. raciborskii is a now a species of concern in recreational, stock drinking, and potable water supplies in New Zealand.  相似文献   

2.
Abstract

Stomach contents of Gobiomorphus cotidianus,Retropinna retropinna, Gambusia affinis, and Anguilla australis were compared between two shallow lakes in the lower Waikato River basin, to examine the relationship between turbidity and diet. Lake Waahi and the south arm of Lake Whangape had been turbid (20–40 g suspended solids (SS) m?3) and devoid of submerged macrophytes since the late 1970s and early 1980s, respectively. The main basin of Lake Whangape had been generally clearer (5 g SS m?3) with dense beds of submerged macrophytes, but at the time of sampling (1987) water clarity had deteriorated (> c. 10 g SS m3) and submerged macrophytes had declined. The mysid Tenagomysis chiltoni was an important prey for all species of fish from turbid water bodies but was less important in stomachs of fish in the main basin of Lake Whangape. Apparently, mysids were not an important prey in Lake Waahi before it became turbid. Chironomid larvae and pupae dominated the diets of small fish in the main basin of Lake Whangape. Fish and mysids were the most important prey of shortfinned eels in both lakes, with mysids most important in Lake Waahi. High mysid densities in the turbid water bodies provide an alternative food resource apparently compensating for those lost by fish when water clarity declined and submerged macrophytes collapsed.  相似文献   

3.
Population dynamics of crayfish (Paranephrops planifrons White) in streams draining native forest and pastoral catchments, Waikato, New Zealand, were investigated from September 1996 to July 1998. Crayfish densities were generally greater in native forest streams because of high recruitment over summer, but varied greatly between streams in both land uses. Peak densities in summer were 9 crayfish m‐2 in native forest and 6 crayfish m‐2 in pasture streams, but peak biomass in summer was much greater in pasture streams. Mark‐recapture data showed that crayfish, particularly juveniles, in pasture streams grew faster than in native forest streams, through both greater moult frequency and larger moult increments. Females reached reproductive size at c. 20 mm orbit‐carapace length (OCL) after their first year in pasture streams, but after 2 years in native forest streams. Annual degree days >10°C appeared to explain the differences in the timing of life cycles. Estimates of annual crayfish production (range = 0.8–3.4 g dry weight m‐2 year–1) were similar in both land uses, and P/B ratios were between 0.95 and 1.2. Despite deforestation and conversion to pasture, crayfish in these Waikato hill‐country streams have maintained similar levels of annual production to those in native forest streams, although juvenile growth rates have increased and longevity has decreased.  相似文献   

4.
In two small monomictic lakes near Queenstown, South Island, New Zealand, algal associations characteristic of eutrophic waters were present throughout most of the period from December 1969 to February 1972.

In Lake Hayes, five of the six algal genera which were recorded in the plankton in 1948–50 were still present, but Anabaena appeared to have increased. Blooms of A. flos‐aquae which were not recorded 20 y ago (Jolly 1952) occurred in the lake in the three summers of this study and in winter of the second year. Melosira granulata dominated the plankton in winter; at other times of the year Closterium aciculare, Cyclotella kuetzingiana, and Staurastrum spp. were dominant.

In Lake Johnson the major algae differed from one year to another. Blooms of Anabaena flos‐aquae formed during the first two summers but were absent in the third, when Closterium aculum var. variabile was dominant. Peridinium cinctum was abundant throughout the first year, especially in December 1969 and October 1970, when concentrations of more than 1000 cells per ml occurred at the surface. During autumn and winter of the second year, Staurastrum bibrachiatum dominated the plankton.

In both lakes micro‐algae were abundant in late spring and early summer.

In winter when the lakes were isothermal, algae were distributed fairly uniformly with depth. During the period of thermal stratification, algae were mainly confined to the epilimnion. Although green algae and diatoms were usually dispersed fairly uniformly throughout this zone, Cryptomonas and Peridinium were often concentrated at a certain depth. In Lake Johnson in late summer 1971, a layer of purple photosynthetic bacteria, of which concentrations of 0.5–1.3 × 10° cells per ml were recorded, was present at a depth of 7–8 m.

Algae were more abundant in summer than in winter in both lakes. The mean standing crop of algae for the trophogenic zone of Lake Hayes was 6000 cells per ml, and a maximum crop of 65 000 cells per ml was recorded in December 1971 during an Anabaena bloom: the mean volume of phytoplankton was 1.93 mm3 per litre for the trophogenic zone with a maximum of 7.49 mm3per litre in January 1970 when Anabaena and Peridinium were abundant. In Lake Johnson the mean number of algae in the trophogenic zone was 11000 cells per ml and the mean volume of phytoplankton was 9.37 mm3 per litre: a maximum volume of 33.12mm3 per litre was recorded in October 1970 when Peridinium was abundant.  相似文献   

5.
The comparative limnology of some New Zealand lakes   总被引:1,自引:1,他引:0  
The morphometry, environmental conditions, and some physical and chemical data are given for twenty‐four New Zealand lakes: seven are in the southern part of the South Island, the others, excluding Lakes Waikaremoana and Waikareiti, are in the “thermal region” of the central North Island. These lakes form two separate groups and include the largest and deepest lakes in both islands.

The lakes in which stratification was established were found to belong to the class known as warm monomictic Two lakes, Rotorua and Rotoehu, were found to be homothermous throughout the year. Open water surface temperatures did not exceed 23°c in the North Island lakes or 19°c in the South Island, and minimum temperatures recorded were 7°c in the northern lakes and 5°c in the southern. In deep lakes the range of temperature was much less: Wakutipu had a range of 16–8.85°c.

The disappearance level of a Secchi disc varied from 18 m (Lake Taupo) to 0.8 m (Lake Rotongaio). The transparency of the water in the glacial and volcanic lakes was comparable to that of similar lakes in other parts of the world.

It was found that total ions, measured by the ion‐exchange resins reached high concentrations in lakes fed by thermal waters: Rotomahana 14.32m.e./l. By contrast Tikitapu, a seepage lake, had the low concentration of. 0.28m.e./l, and Wakatipu, a glacial fed lake, a concentration of O.58m.e./1. The pH range was 8.1–5.8, the lowest value being in Tikitapu, a volcanic lake. Slightly lower pH values were recorded in the bottom waters of lakes when stratified. Lakes were usually supersaturated with oxygen at the surface, and only a few small lakes showed a hypolimnial deficiency. Silica and phosphate were found in high concentrations in some thermal lakes but nitrogen in the forms measured, was found to be low.  相似文献   

6.
Heterotrophic potentials and trophic status of ten New Zealand lakes   总被引:1,自引:1,他引:0  
A comparative study of the heterotrophic potentials of ten New Zealand lakes was carried out. Two sampling periods were chosen, one during late August and early September 1972 (late winter, minimal thermal stratification) and another during February 1973 (mid summer, strong thermal stratification in all but two lakes). A wide range of heterotrophic potentials occurred which enabled the lakes to be placed in the following basic groups according to descending trophic levels:

Group I: Rotowhero (thermal, acid lake) >Rotorua>Okaro

Group II: Rotokakahi> Tikitapu >Okareka

Group III: Rotoma = Rotoroa (S.I.) = Rotoiti (S.I.) = Okataina

Maximum values for heterotrophic potential (Vm a x ) in micrograms of glucose per litre per hour were: Maximum heterotrophic activities were found within the metalimnion, except in Lakes Tikitapu and Rotokakahi, where maximum activities occurred within the hypolimnion.  相似文献   

7.
Over a diel cycle, the concentration in Waikato River water of negatively buoyant seston and of some animals from the littoral of Lake Taupo was significantly correlated with the velocity of wind over the lake. Riverine abundance of several littoral, lacustrine animals was significantly correlated with the weight of negatively buoyant seston. A significant negative correlation existed between the densities of negatively buoyant and positively buoyant seston in the river. In qualitative comparisons, eulimnetic species were sometimes over‐represented and sometimes under‐represented in river water, with no consistent pattern. Concentrations of eulimnetic species in river water were usually greatly less (down to 10‐2) than those in the lake. The range of densities of zooplankters (> 160 μm in size) in the river was c. 20–2000 ind. m‐3. Significant differences in the density of eulimnetic species in the river occurred at different times of the day, but on only 1 occasion was this probably linked to diel vertical migration in the lake. An increased rate of discharge from the lake may cause an increase in the density of some taxa in the river. The mean daily export of Botryococcus from the lake was at least 230 kg dry weight Forty‐five animal taxa derived from the littoral region of the lake were collected from the river including many not hitherto recorded from Lake Taupo.  相似文献   

8.
Abstract

Thirty sites were sampled in three New Zealand rivers (Waikato, Maitai, and Wakapuaka) during late summer 1977. Samples were collected from just below the surface at mid river or in the tailraces below hydro‐electric dams.

Parameters measured included bacterial numbers (direct counts), heterotrophic potential (Vmax ), adenosine triphosphate (ATP), chlorophyll a (Chi a), and concentrations of nitrogen and phosphorus compounds.

Bacterial populations per millilitre fluctuated threefold (6.4–19.4 × 105) along the Waikato River and were lower and more consistent in the two South Island rivers (1.46–2.55 × 105). In contrast, Vmax varied 5000‐fold in the Waikato River, from a characteristically oligotrophic value of 0.0035 μg. l?1·h?1 (Lake Taupo outlet) to a eutrophic value of 18.4 μg. l?1·h?1 at the Mihi bridge. Vmax for the two South Island rivers ranged from 0.0091 to 0.189 μg. l?1 · h?1.

ATP, Chi a, Kjeldahl nitrogen, nitrate nitrogen, and total phosphorus concentrations for the 20 sites on the Waikato River varied in a similar way to the Vmax and bacterial data. There were large peaks at the Mihi bridge, lower values for the dam tailraces and significant increases for the sites below Hamilton. Concentrations for these parameters were lower and more consistent along the lengths of the two South Island rivers.

Most parameters were significantly correlated with each other for the Waikato River samples. The strongest correlations were between Vmax and bacterial numbers and between Vmax and nitrate nitrogen. In the Maitai and Wakapuaka River series these correlations were also significant, but the only other significant correlations recorded there were between ATP and nitrate nitrogen, and between ATP and bacterial numbers.  相似文献   

9.
Water quality of a lowland stream in a New Zealand dairy farming catchment   总被引:3,自引:2,他引:1  
A small stream in a predominantly dairying catchment in the Waikato region of New Zealand was monitored for 2 years at three sites. Total nitrogen (TN) concentrations were up to 7.09 g m‐3 in winter, with the bulk comprising nitrate nitrogen (NO 3‐N). During summer NO 3‐N was near zero and TN mostly comprised organic nitrogen. Maximum concentrations of total phosphorus (TP) and dissolved reactive phosphorus (DRP) were 1.64 and 0.555 g m‐3, respectively, and peaks coincided with spring and autumn applications of phosphorus fertiliser. Ammoniacal nitrogen concentrations exceeded 1 g m‐3 on several occasions and mean concentrations at the three sites were 0.165–0.272 g m‐3. Faecal coliform and enterococci bacteria concentrations were 64–26000 and 7–23000 cfu per 100 ml, respectively. Specific yields of TN and NO 3‐N (35.3 and 30.7 kg ha yr‐1, respectively) were much greater than any previously reported for New Zealand pasture catchments, whereas TP and DRP yields (1.16 and 0.54 kg ha yr‐1, respectively) were more in accord with other studies. Greater use of land treatment of liquid wastes will reduce stream inputs of faecal organisms, NH4‐N and P.  相似文献   

10.
Abstract

Chemical parameters (pH, Eh, carbon, Kjeldahl nitrogen, total phosphorus, 0.5M H2SO4‐extractable phosphorus, organic phosphorus, and water‐soluble phosphorus) were measured in the surface layers of sediments collected from various depths in Lakes Rotowhero, Okaro, Ngapouri, Rotokakahi, Okareka, Tikitapu, Okataina, and. Rotoma during October 1972. The sediments of the productive geothermal lake, Rotowhero, were markedly different from those of the cold‐water lakes: they had relatively low pH values, high carbon (mean 8.5%) and organic phosphorus (mean 4160 μg.g?1) concentrations, and very high total phosphorus concentrations (mean 4770 μg.g?1), probably as a result of enrichment by hot springs.

The mean concentrations in the sediments of the cold‐water lakes were carbon 3.2–7.9%, Kjeldahl nitrogen 3380–8310 μg.g?1 and phosphorus 690–1780 μg.g?1. These concentrations are within the ranges for New Zealand terrestrial topsoils, but the lake sediments appear enriched in phosphorus relative to local topsoils. Total carbon, nitrogen, and phosphorus concentrations of sediments tended to be highest in the eutrophic lakes (Okaro, Ngapouri) although the deep oligotrophic lakes (Okataina, Rotoma) had relatively high total phosphorus concentrations (means 1400, 1510 μg.g?1). Overall, the carbon, nitrogen, and phosphorus concentrations of the sediments showed little relationship to the trophic state of the lake.

Organic phosphorus concentrations of the surface layers of sediments were similar in all the cold‐water lakes (mean 319 μg.g?1). The proportion of the total phosphorus apparently ‘fixed’ in mineral material was minimal (0–1%) in sediments from the eutrophic and mesotrophic lakes, but in the oligotrophic lakes was similar to that in New Zealand topsoils (9–14%). Reducing conditions may cause solution of a high proportion of the ‘fixed’ phosphorus in the eutrophic lakes.

The water‐soluble phosphorus concentrations in the sediments of the five shallow cold‐water lakes (Okaro, Ngapouri, Rotokakahi, Okareka, Tikitapu) correlated positively with trophic state and with concentrations of dissolved phosphorus in the lake waters.

Carbon, nitrogen, and phosphorus concentrations in the sediments tended to vary with overlying water depth. This should be considered when comparisons are made between lakes.  相似文献   

11.
We carried out a benthic survey and two experiments in runs at eight sites down the Kakanui River (South Island, New Zealand) during summer low flows, to investigate the interaction between nutrients, periphyton, and macro‐grazers. Benthic periphytic biomass was generally low (< 20 mg m‐2 chlorophyll a) at most sites, but high densities of macro‐grazers (mainly snails) were observed at six of the eight sites. Chlorophyll a and cellular P concentrations were generally higher on artificial substrates in the first‐ to third‐order tributaries, compared with downstream. Macro‐grazer densities (mainly snails) were also highest in the second‐ and third‐order tributaries. Enrichment of patches with N and P did not translate into significant increases in chlorophyll a concentrations. Instead there was a general increase in macro‐grazers, and an increase in the relative abundance of Cocconeis placentula. In a second experiment, the chlorophyll a level was five‐fold higher on the substrates where macro‐grazers were excluded and there was no significant response of chlorophyll a to nutrient addition on these substrates. On the grazed substrates, densities of snails and caddis‐larvae were two‐fold higher with N+P enrichment. These experiments provided evidence for a tight coupling between first and second trophic levels, and strong grazer control of periphyton, in this river.  相似文献   

12.
Abstract

Stable isotopes of carbon (C) and nitrogen (N) were studied in 11 stream communities in the Waikato region of New Zealand. From comparisons of mean δ13C and δ15N values, food webs in the shaded, forest streams were clearly based on allochthonous material (conditioned leaf litter and terrestrial invertebrates). Autotrophs in forest streams were not a significant C source for the food webs. However, the C source of food webs in the unshaded pasture streams appeared to be a mixture of allochthonous and autochthonous material. Conditioned leaf litter appeared to contribute to the pasture stream food webs, and the δ13C and δ15N of some samples of epilithic diatoms indicated their consumption by invertebrates in pasture streams. Fish ate a wide range of aquatic invertebrates; longfinned eels (Anguilla dieffenbachii) and banded kokopu (Galaxias fasciatus) also had a large proportion of terrestrial invertebrates in their diet. Filamentous green algae were found only at pasture sites, where they were sometimes abundant. The wide range of δ13C values of filamentous green algae (‐18.8 to ‐29.7‰) complicated understanding of their role in the stream food webs. The δ13C values of Cladophora were related to water velocity, with more 13C‐enriched values in pools than in runs (‐23.2‰ in pools, mean velocity 0.12 m s?1; ‐28.1‰ in runs, mean velocity 0.24 m s?1). Crayfish and the gastropod mollusc Potamopyrgus appeared to be the only invertebrates to eat filamentous green algae.  相似文献   

13.
A number of pathological abnormalities previously unrecorded in New Zealand fishes are described. A silver trevally (Pseudocaranx dentex) captured from the Bay of Islands exhibited swim bladder ectasia. Black oreo (Allocyttus niger) and smooth oreo (Pseudocyttus maculatus) had cysts of unknown aetiology (CUEs) in the gills at prevalences up to 76% and 81%, respectively, in some fishing areas. The CUEs appear long lived and may have some utility for stock discrimination. A hoki (Macruronus novaezelandiae) with X‐cell pseudotumours in the gill was recorded from the Chatham Rise. Alfonsino (Beryx splendens) had conspicuous Kudoa sp. cysts in the gills at prevalences of up to 28%. Smelt (Retropinna retropinna) from the Waikato River were infected with a xenoma forming, Glugea‐like microsporidian.  相似文献   

14.
ABSTRACT

Knowledge of trophic status is fundamental to understanding the condition and function of lake ecosystems. We developed regression models to predict chlorophyll a concentrations (chl a) in New Zealand lakes for reference and current states, based on an existing dataset of total nitrogen (TN) and total phosphorus (TP) concentrations for 1031 lakes. Models were then developed to predict Secchi depth based on chl a and a sediment resuspension term applicable to shallow lakes. Estimates of all four Trophic Level Index (TLI) variables (chl a, TN, TP and Secchi depth) were analysed to estimate reference and current state TLI for the nationally representative sample of 1031 lakes. There was a trend of eutrophication between reference and current states, with systematic differences among lake geomorphic types. Mean chl a increased 3.5-fold (2.42?mg?m?3 vs. 8.32?mg?m?3) and mean Secchi depth decreased (indicating lower clarity) by approximately one-third (9.62?m vs. 6.48?m) between reference and current states. On average, TLI increased by 0.67, with the TLI increase >1 in approximately one-third (31%) of lakes. This study informs the status of lake ecosystems in NZ and provides benchmarks to guide management and assessment.  相似文献   

15.
The submerged vegetation of Lakes Sumner, Marion, Katrine, Taylor, and Sheppard was surveyed in May 1987. These high‐altitude lakes lie at c. 600 m a.s.l., within the largely unmodified upper Hurunui catchment. Submerged vegetation was diverse and included numerous short shallow‐water species, dense swards of Isoetes alpinus, low covers of taller native vascular plants, and charophyte meadows beyond the depth limit of vascular plants to a maximum of 15 m. A sparse deepwater bryophyte community was observed from 11 to 32 m depth in Lake Sumner. Displacement of native vegetation by dense growths of the adventive oxygen weed Elodea canadensis over mid‐depths of 3–6 m was noted in all lakes, except Lake Marion.  相似文献   

16.
By transforming fixed nitrogen (N) into nitrogen gas, the biochemical processes that support denitrification provide a function critical to maintaining the integrity of ecosystems subjected to increased loading of N from anthropogenic sources. The Louisiana coastal region receives high nitrate (NO3?) concentrations (> 100 µM) from the Mississippi–Ohio–Missouri River Basin and is also an area undergoing high rates of wetland loss. Ongoing and anticipated changes in the Louisiana coastal region promise to alter biogeochemical cycles including the net rate of denitrification by ecosystems. Projecting what these changes could mean for coastal water quality and natural resources requires an understanding of the magnitude and patterns of variation in denitrification rates and their connection to estuarine water quality at large temporal and spatial scales under current conditions. We compile and review denitrification rates reported in 32 studies conducted in a variety of habitats across coastal Louisiana during the period 1981– 2008. The acetylene inhibition and 15N flux were the preferred techniques (95%); most of the studies used sediment slurries rather than intact sediment cores. There are no estimates of denitrification rates using the N2/Ar ratio and isotope pairing techniques, which address some of the problems and limitations of the acetylene inhibition and 15N flux techniques. These studies have shown that sediments from estuaries, lakes, marshes, forested wetlands, and the coastal shelf region are capable of high potential denitrification rates when exposed to high NO3? concentrations (> 100 µM). Maximum potential denitrification rates in experimental and natural settings can reach values > 2500 µmol m2 h? 1. The lack of contemporary studies to understand the interactions among critical nitrogen transformations (e.g., organic matter mineralization, immobilization, aquatic plant assimilation, nitrification, nitrogen fixation, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (annamox) limits our understanding of nitrogen cycling in coastal Louisiana, particularly the role of respiratory and chemolithoautotrophic denitrification in areas undergoing wetland restoration.  相似文献   

17.
One hundred and four taxa of planktonic cyanobacteria (blue‐green algae) have been recorded from New Zealand lakes: 32 belong to the Chroococcales, 72 to the Nostocales. None of the taxa is endemic to New Zealand; most (if not all) are cosmopolitan. On average, more taxa have been reported from North Island (7.8 ± 6.7, N = 69) than South Island lakes (3.3 ± 3.9, N = 59). This difference is attributable, in part, to the large proportion of glacial lakes in the South Island, which are commonly poor in plant nutrients and possess sparse phytoplankton populations. Many of the taxa show a strong preference for eutrophic conditions. Notable exceptions are Anabaena affinis and Gomphosphaeria lacustris, which occur in a large proportion of mesotrophic (48%) and oligotrophic lakes (43%), respectively. Taxa which are often abundant and frequently responsible for conspicuous water‐blooms are Microcystis aeruginosa, Anabaena circinalis, A. flos‐aquae and A. spiroides. The limited population data available indicate a high level of interannual variability in the timing, magnitude, and duration of cyanobacterial blooms in New Zealand lakes.  相似文献   

18.
Lakes in the beech (Nothofagus sp.) forest foothills between Greymouth and Hokitika, Westland, are characterised by amber‐coloured waters. Microbiological, biochemical, and chemical analyses of samples from nine such lakes during March 1976 indicate that they are unproductive. Microbial biomass was intensively investigated in heavily stained Lakes Haupiri and Lady and in least‐stained Lake Brunner. A combination of adenosine triphosphate assays, Utermöhl phytoplankton counts, and autoradiographic biomass determinations revealed a greater bacterial than algal biomass in heavily stained lakes, a highly unusual phenomenon which suggests that most of the production of organic matter was allochthonous. Autochthonous productivity was low, probably because biologically available phosphorus was very scarce and because discoloration reduced the transparency of the water. Hypqlimnetic oxygen depletion was slight during this period of maximum thermal stratification; decomposition of organic matter was apparently incomplete. Reactive phosphorus did not increase appreciably in partially deoxygenated hypolimnia. Much of the allochthonous organic matter originating from beech forests and their soils may be partially resistant to biodegradation.  相似文献   

19.
The distribution of seven submerged aquatic pest plants is reported. Lake vegetation surveys recorded pest plants in 27.9% of 344 lakes, with two species co‐occurring in 5.8%, and three species in 2.6% of lakes. Egeria densa was most frequent (15.4% of lakes), followed by Ceratophyllum demersum (9.0%), Lagarosiphon major (7.3%), and Utricularia gibba (5.5%). Spread since 2000 has continued for five pest plants, with 34 lakes invaded by U. gibba over 2004–08 alone. Early regional sites in proximity to human population centres were likely plant liberations and numerous potential founder colonies remain in garden ponds. Human activities were important for inter‐lake dispersal, with the exception of bird‐dispersed U. gibba. Significant lake associations between pest plants, and with presence of six exotic fish species, suggest common dispersal pathways and similar introduction risks. Therefore, predictions of future spread should be possible based on sources, dispersal pathways, and identifying key risk factors for lakes.  相似文献   

20.
We reviewed lakes in New Zealand reported to have undergone regime shifts between macrophyte‐dominated clear water states and de‐vegetated, turbid states. Regime‐shifting lakes (RSLs) occurred along a wide latitudinal gradient. We obtained catchment land‐use data as well as data on the occurrences of introduced (non‐indigenous) macrophytes and herbivorous and benthivorous fish for the 37 RSLs and for 58 lakes with similar maximum depths and climates, but which had not been reported to have undergone regime shifts. All RSLs had a maximum depth <20 m and mean annual surface air temperature between 9 and 16°G Regime shifts were positively related to the percentage of the catchment in pasture and negatively related to the percentage of the catchment in forest. The occurrences of the introduced macrophyte Egeria densa and the introduced fish, Ameiurus nebulosus (catfish), Carassius auratus (goldfish), Scardinius erythrophthalmus (rudd), Cyprinus carpio (koi carp), and Tinca tinca (tench), were significantly correlated to regime shifts in lakes. Although the presence of other introduced aquatic macrophytes was not significantly correlated with RSLs, the number of exotic fish taxa present in lakes was strongly positively correlated with increasing prevalence of regime shifts. The strength of the correlations between land use and introduced species versus regime shifts illustrates a number of factors which could be managed to reduce the susceptibility of lakes to regime shifts and to restore lakes that have become de‐vegetated. Our findings also suggests that regime shifts in lakes were unlikely to have been common in New Zealand lakes before anthropogenic deforestation and introductions of introduced aquatic taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号