首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
2.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献   

3.
The distribution and nature of organic matter clearly identify the principle sectors of the lagoon which vary according to hydrological and sedimentological conditions. The central area frequently includes coarse ancient fluviatile sediments. The rare organic matter there offers aliphatic and nitrogenous characters which may be derived from both the origin of organic matter (algae and meiofauna) and the level of oxygenation prevailing during deposition. In the southern sector, highly oxygenated conditions resulting from sea currents generated by the Cotonou outlet could cause the elimination of labile compounds, and hence be responsible for the high degradation state of organic matter. In the western sector, still water conditions allow fine sediments to be deposited. This frequently leads to the accumulation of organic matter showing such reducing conditions that they allow the integration of sulphur in humic compounds and a decrease of their solubility. In the northern area, the contribution of terrestrial material supplied by the Ouémé and Sô rivers is clearly indicated by the low average percentages of hydrolyzable fraction, C/N ratios ranging between 9 and 15, while H/C and N/C ratios are low in humic acids.  相似文献   

4.
Closed, isolated small systems, as the representatives of a “unique-environmental feature”, are valuable natural laboratories for studying different biogeochemical processes. The saline Rogoznica Lake (“Dragon Eye”), situated on the Eastern Adriatic coast is such a system (10 276 m2, 15 m deep) typical of many stratified, sulfide rich water bodies. The depth of mixolimnion changes seasonally and it is greatly influenced by meteorological conditions, i.e. temperature and rainfall. Vertical mixing usually occurs during winter when cold, oxygen-rich water from the surface sinks downwards.  相似文献   

5.
G. J. Herndl    J. Faganeli    N. Fanuko    P. Peduzzi  V. Turk 《Marine Ecology》1987,8(3):221-236
Abstract. The interdependences between phytoplankton standing crop, bacterial biomass and the dissolved organic matter (DOM) pool in the water column were investigated and related to sediment parameters in a shallow marine bay (Bay of Piran, Northern Adriatic Sea) over an annual cycle. Bacterioplankton density varied between 1–10 × 105 cells ml-1, with lowest density observed in March corresponding to the low Chi a concentrations during this period. Generation times as determined by dialysis incubations ranged between 4h (June) and 82 h (March). Mean bacterial secondary production rates during summer were about 40 mg C m-1 d-1 and 5mg C m-3.d-1 during winter. With a short time lag, DOM concentrations followed the fluctuation in Chi a.
Sediment oxygen demand measurements revealed a mean mineralization rate of about 260 mg C m-2 d-1 during summer and 100–200 mg C m-2 d-1 in winter. Sediment bacterial density varied between 108 - 109 cells g (sediment dry wt)-1 in the top 5 cm sediment layer or, in terms of biomass, 4.3 g C m-l during summer and 0.6 g C m-2 during winter. Highest concentrations of DOM in pore waters were measured in September, coinciding with high rates of sediment oxygen demand.  相似文献   

6.
To understand the role that physical processes play on the biogeochemical cycles of estuaries, we conducted intense field studies of the turbidity maximum region within a partially mixed estuary (Winyah Bay, SC, USA) under contrasting conditions of river discharge, tides and wind. Water samples and hydrographic data were collected at different depths and locations along the main channel over several tidal cycles during several cruises to Winyah Bay. Tidal variations in current speed, salinity, total suspended solid concentrations were measured within each cruise and were consistent with estuarine circulation processes. Salinity and total suspended solid concentrations ranged from 0 to 32 and from 20 to over 500 mg L−1, respectively, with the highest salinity and total suspended solid values measured during periods of low river discharge. In fact, comparison of tidally averaged salinity and total suspended solid concentrations revealed marked differences among cruises that were negatively correlated to river discharge and SW wind speed. Moreover, significant contrasts in the chemical compositions of suspended particles were evident among periods of contrasting river discharge and wind regime. For example, the weight percent organic carbon content of suspended particles ranged from 1 to over 6% and displayed a positive correlation with river discharge. Similarly, both the molar carbon to nitrogen ratios (10 to 20 mol:mol) and stable carbon isotopic compositions (−25 to −29%) of the suspended organic matter varied significantly as a function of discharge and wind. Such trends indicate that in Winyah Bay low river discharge and steady SW winds promote resuspension of bed sediments from shallow regions of the estuary. These materials contain highly altered organic matter and their incorporation into the water column leads to the observed trends in suspended particle concentrations and compositions. Furthermore, these conditions result in net landward fluxes of salt, sediment and particulate organic matter throughout most of the water column, promoting efficient trapping of materials within the estuary. Our results illustrate the fundamental connection between physical forcings, such as discharge and wind, sediment transport processes and the cycling of biogeochemical materials in estuarine environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号