首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Laboratory experiments demonstrated that migrant juvenile banded kokopu (Galaxias fasciatus Gray) were more sensitive to suspended sediment (SS) than other native fish species. If juvenile migrants avoid waters made turbid by SS and their recruitment to adult habitats up stream is reduced, then adult abundance may decline in turbid rivers. To test this, we compared the abundance of diadromous native fish between turbid and clear rivers. The duration (% time) for which SS concentrations exceeded 120 mg litre‐1 (a critical level from laboratory experiments) during the migration season (August‐December) was estimated for over 150 New Zealand river sites. Turbid rivers were defined as those where SS concentrations exceeded 120 mg litre‐1 for over 20% of the time and clear rivers as those where SS concentrations exceeded 120 mg litre‐1 for less than 10% of the time. Eight turbid rivers and seven clear ones were identified where sufficient data on SS and native fish populations existed to permit a comparison. The mean occurrence of banded kokopu was reduced by 89.5% in turbid rivers and, although other diadromous fish species were also less common, banded kokopu was most affected. Densities of adult banded kokopu were also significantly lower in optimal stream habitats in three turbid compared with three matched clear rivers. We therefore concluded that the abundance of adult banded kokopu was reduced in turbid rivers and propose that this is because of reduced recruitment of juveniles in turbid rivers.  相似文献   

2.
Laboratory experiments have shown that the juvenile migratory stage of banded kokopu (Galaxias fasciatus (Gray 1842)) is more sensitive to turbidity than other native fish species and avoids turbidity levels of >25 nephelometric turbidity units (NTU). Field trials using juvenile fish collected from the Tarawera River and Hays Stream, New Zealand, were used to test the results from these laboratory experiments by measuring the effects of turbidity on the migration direction and rate for banded kokopu in a natural stream setting. In the stream setting, neither the migration rate nor the migration direction were affected at turbidity <25 NTU. At higher turbidity levels, significantly fewer fish migrated up stream within a given time period. Because there was rarely any downstream movement, this suggests the fish either halted or slowed their upstream movement. A slower rate of migration could result in fewer juveniles reaching adult habitat, and would account for the reduced abundance of adult banded kokopu in rivers that are turbid during the migration season. Achieving turbidity levels of <25 NTU in rivers and streams during the migration season would therefore help maintain upstream migrations and populations of banded kokopu, and hence other native fish species.  相似文献   

3.
Abstract

The responses of common smelt (Retropinna retropinna Richardson), inanga (Galaxias maculatus Jenyns), common bully (Gobiomorphus cotidianus McDowall), and shrimp (Paratya curvirostris Heller) to ammonia and low dissolved oxygen (DO), separately and in combination, were measured in a fluvarium. Only common smelt avoided high or low ammonia (c. 8.5 and 2.0 g m?3 NH3, respectively) and low DO (c. 2 g m?3) alone and in combination. Shrimp avoided high ammonia and low DO+ammonia but not low DO on its own. Inanga and bullies showed no significant negative response to either contaminant; rather, inanga were strongly attracted to low ammonia and bullies to low DO. These results parallel those from toxicity experiments that show common smelt and shrimp are usually among the most sensitive native species to various contaminants. The consistent and appropriate avoidance behaviour shown by common smelt, in particular, suggests this species would be a good indicator organism for assessing the health of lowland waterways.  相似文献   

4.
Abstract

The density and biomass of fish and crayfish, and the production of eels, was compared among streams in native forest, exotic forest, and pasture. Populations were estimated by multiple‐pass electroshocking at 11 sites in hill‐country streams in the Waikato region, North Island. Three sites were in native forest, four in exotic forest, and four in pasture. Length of stream sampled at each site was 46–94 m (41–246 m2 in area), and catchment areas up stream of the sites ranged from 0.44 to 2.01 km2.

A total of 487 fish were caught. The species were longfinned and shortfinned eels, banded kokopu, Cran's and redfinned bullies, and common smelt. Eels were the most abundant fish in all three land‐use types, and shortfinned eels were more abundant at pastoral sites (mean density 1.11 fish m?2) than longfinned eels (mean density 0.129 fish m?2). Banded kokopu were present only at forested sites. Mean fish densities were greater at pastoral sites (1.55 fish m?2) than under either native forest (0.130 fish m?2) or exotic forest (0.229 fish m?2). Mean fish biomass was also greater at pastoral sites (89.7 g m?2) than under native forest (12.8 g m?2) or exotic forest (19.3 g m?2). Longfinned eels made a greater contribution to the fish biomass at all sites than did shortfinned eels. Densities of crayfish were high (0.46–5.40 crayfish m?2), but were not significantly different between land‐use types. Crayfish biomass ranged from 1.79 to 11.2 g m?2. Total eel production was greater at pastoral sites (mean 17.9 g m?2 year1) than at forest sites (mean 2.39 gm?2 year?1).  相似文献   

5.
Abstract

Stomach contents of Gobiomorphus cotidianus,Retropinna retropinna, Gambusia affinis, and Anguilla australis were compared between two shallow lakes in the lower Waikato River basin, to examine the relationship between turbidity and diet. Lake Waahi and the south arm of Lake Whangape had been turbid (20–40 g suspended solids (SS) m?3) and devoid of submerged macrophytes since the late 1970s and early 1980s, respectively. The main basin of Lake Whangape had been generally clearer (5 g SS m?3) with dense beds of submerged macrophytes, but at the time of sampling (1987) water clarity had deteriorated (> c. 10 g SS m3) and submerged macrophytes had declined. The mysid Tenagomysis chiltoni was an important prey for all species of fish from turbid water bodies but was less important in stomachs of fish in the main basin of Lake Whangape. Apparently, mysids were not an important prey in Lake Waahi before it became turbid. Chironomid larvae and pupae dominated the diets of small fish in the main basin of Lake Whangape. Fish and mysids were the most important prey of shortfinned eels in both lakes, with mysids most important in Lake Waahi. High mysid densities in the turbid water bodies provide an alternative food resource apparently compensating for those lost by fish when water clarity declined and submerged macrophytes collapsed.  相似文献   

6.
Sediment resuspension during and after mechanical excavation of macrophytes may have a significant impact on resident fish populations. Unfortunately, little is known about the influence of this sediment on the respiratory performance and feeding abilities of fishes in New Zealand waterways. We examined the effects of suspended sediment (SS) concentrations previously observed after a large-scale macrophyte removal operation on oxygen consumption (MO2) and feeding rates of brown trout (Salmo trutta). MO2 at 0 mg L?1, 150 mg L?1, 300 mg L?1, 450 mg L?1 and 600 mg L?1 of SS was measured using semi-closed respirometry. Feeding rates at the same SS concentrations were also measured using laboratory tank experiments. Results suggest that SS concentrations up to 600 mg L?1 have no effect on MO2. Conversely, feeding rates were significantly reduced at 450 mg L?1 (22% reduction) and 600 mg L?1 (31% reduction), indicating that sediment concentrations above 450 mg L?1 may negatively affect brown trout populations.  相似文献   

7.
The distribution of fish within eight small streams feeding into the lower Taieri and Waipori Rivers on the east coast of New Zealand's South Island was examined. A total of eight native and two introduced species were recorded. Eels (Anguilla spp.) and giant kokopu (Galaxias argenteus Gmelin) were the most widely distributed species being located in all streams surveyed. Common bullies (Gobiomorphus cotidianus McDowall) and brown trout (Salmo trutta Linnaeus) were also widely distributed being detected in seven and six of the streams respectively. Three streams of potential conservation significance were identified. These were Picnic Gully Creek which contained a significant population of banded kokopu (Galaxias fasciatus Gray), a Category C threatened species, and Cullens and Alex Creeks which contained significant populations of giant kokopu, a Category B threatened species. The population of giant kokopu in Cullens and Alex Creeks currently represents the largest known population of this species on the east coast of New Zealand (excluding Southland). It has been suggested that brown trout may influence the distribution of native galaxiids. The longitudinal distribution of giant kokopu and brown trout in streams was examined at night using a continuous spotlight sampling approach. Distributions of these two species rarely overlapped at a local scale. Coarse habitat use data indicated that brown trout regularly occupied a variety of habitat types including modified agricultural channels. In contrast, giant kokopu rarely used agricultural channels being predominantly located in pool habitats.  相似文献   

8.
Populations of small fish were sampled in 12–20 riffles of the lower reaches of 3 braided rivers in Canterbury, New Zealand, during periods of low, stable flows. In the Ashley, which has been least affected by floods in recent years, the standing stock of fish was severalfold higher than in the Hurunui and Rakaia Rivers, which experienced large floods over much of the time, particularly the Rakaia River. Mean abundance + 1 standard deviation (S.D.) of all species combined, amounted to 5.95 + 2.76 fish m 2 for 10 species in the Ashley, 0.59 + 0.60 fish m 2 for 7 species in the Hurunui, and 0.23 + 0.11 fish m 2for 6 species in the Rakaia. Mean biomass was 24.85 + 9.59, 2.11 + 1.19, and 2.50 ± 3.60 g m 2in the Ashley, Hurunui, and Rakaia Rivers, respectively. The more common species in the Ashley and Rakaia Rivers were torrentfish, longfinned eel, blue‐gilled bully, and upland bully. The same dominant species complex prevailed in the Hurunui River except that the common river galaxias was present instead of the bluegilled bully. The adverse effects of floods on fish, either directly, indirectly, or both, are considered to be a major limiting factor offish populations in braided rivers characterised by highly unstable flows and river beds, and a lack of suitable cover for fish.  相似文献   

9.
Abstract. The secondary production and population dynamics of the mole crab Emerita brasiliensis Schmitt, 1935 (Decapoda: Hippidae) were studied by taking monthly samples from June 1993 to May 1995 at each of three intertidal transects at Prainha beach, Brazil. The lifespan was ca. 8 months for males and females, but females showed higher growth, mortality, secondary production, and turnover rate. The higher production in spring versus autumn and winter was related to intense recruitment during that period. The population production was estimated at between 39.86 and 46.88 g (AFDW) · m?2 · a?1 for the first year (June 93–May 94) and between 150.95 and 156.07 g (AFDW) · m?2 · a?1 for the second year (June 94–May 95); the mean annual biomass was 4.91 and 23.09 g (AFDW) · m?2, respectively. High P/B rates, between ca. 6 and 9 · a?1, reflected the fast growth, high mortality, and low lifespan of the population, characterized by a high percentage of recently recruited individuals.  相似文献   

10.
Abstract

The water chemistry, flora, and fauna of Lake Rotokawa (38° 37.8’ S, 176° 11.2'E) was studied in 1975–76. The mean pH is 2.1 and thermal inflows may elevate the mean summer temperature of the surface waters 4.2°c above that of nearby cold water Lake Rotongaio (18.9°c). The temperature range of surface water was from 10.1 °c in winter to 23.1°c in summer. The major anions were SO4 2? 679 g.m?3, and Cl‐ 314 g.m?3. Mean concentrations of major cations were Na+ 224 g.m?3, K+ 28.9 g.m?3, Ca2+ 13.3 g.m?3, and Mg2+ 2.6 g.m?3.

Two species of flagellate algae were recorded, of which Euglena anabaena was predominant. Only two benthic macroinvertebrates were found, larvae of Chironomus zealandicus, mean density 253 per square metre, and Helobdella sp., 1.3 per square metre.

The Parariki Stream was influenced by thermal springs in its upper and lower reaches, being cooler (24–25°c) about halfway along its length than near its source (27.8–39.0°c) or confluence (26.5°‐28.0°c) with the Waikato River. In the cooler stretch of the stream where unidentified benthic algae were not limited by high temperature, chlorophyll and total pigment increased from 3.9 to 377.9 mg.m?3 and from 17.5 to 534.4 mg.m?3 respectively, and nutrient levels fell (NO3‐N, 22–10.5 mg.m?3; NH4‐N, 6440–230 mg.m?3; and PO4‐P, 51–19 mg.m?3).  相似文献   

11.
Concentrations of chlorophyll a and suspended particulate concentrations were measured during three lake-wide surveys of St Lucia, a shallow, turbid estuary on the east coast of South Africa. There was no salinity gradient in the system during any of the surveys, but between the surveys there were considerable salinity differences. Summer turbidities were higher than those of winter and spring, and turbidity along the eastern edge of the system was lower than elsewhere. Chlorophyll a was present over a wide range of salinities and turbidities and was generally highest in summer. However, there was no relationship between salinity and concentrations of chlorophyll a, and the concentrations were not significantly higher along the less turbid eastern shore. Concentrations of total paniculate matter (TPM) and particulate organic matter (POM) in the < 100 μm fraction were significantly correlated with turbidity throughout the year, but chlorophyll a and POM (< 100 μm) were significantly correlated only in summer. Concentrations of TPM in the > 100 μm fraction were two orders of magnitude lower than those in the < 100 μm fraction, but the organic content of the former fraction was very much higher. There was no relationship between turbidity and TPM (> 100 μm), nor between chlorophyll a and POM (> 100 μm) concentrations. Under conditions of high TPM load and in the salinity range 2–25 × 10?3, phytoplankton would probably still occur in St Lucia. Estimates of phytoplankton production ranged between 218 and 252 mg C·m?2·day?1. A comparison of estimates of the standing stocks of carbon from phytoplankton and suspended POM < 100 μm indicated that carbon input from sources other than phytoplankton may be important.  相似文献   

12.
Abstract

The ultraviolet (UV) sensitivity of five species of freshwater zooplankton (three Cladocera, two Copepoda) were investigated. The animals were exposed to varying levels of UV‐radiation in a sunshine‐simulator and the UV doses for 10 and 50% mortality (LD10, LD50) were estimated using a dose‐response model. To place these doses in context they were compared with modelled clear‐sky surface UV irradiances in New Zealand. The cladocerans Daphnia carinata and Ceriodaphnia dubia were sensitive to levels of UVB irradiance of LD10 = 18–25 kJ m?2 and LD50 = 35–37 kJ m?2. These sensitivities are consistent with published values for other cladocera. In contrast a third cladoceran, Bosmina meridionalis, exhibited no higher mortality over the full range of the cumulative UVB‐doses used (3–40 kJ m?2) than controls receiving no UV exposure. The copepod Boeckella delicata showed the highest UV‐sensitivity of all organisms tested (LD10 = 7 kJ m?2, LD50 = 33 kJ m?2) whereas for Boeckella triarticulata, which was more heavily pigmented than B. delicata, no UV‐induced mortality was observed. Under natural conditions UV irradiances of up to 100 kJ m?2 day?1 can fall on the surface of New Zealand lakes. Although this is attenuated in natural waters, these data suggest that UVB irradiance may be a significant ecological variable to some zooplankton species.  相似文献   

13.
The effects of riparian manipulation in New Zealand are described for two case studies, one a short‐term study of the effects of the removal of riparian vegetation on fish, and the second, a long‐term study of the effect of re‐establishment of riparian vegetation on fish and benthic macro invertebrates. The first case study was an experiment carried out between November 2001 and May 2002. Overhanging bank vegetation and in‐stream wood were removed from short reaches of a small pastoral stream that had intact riparian margins, resulting in a change in stream structure with the formation of shallow uniform runs rather than pool and riffle structures as in unmodified reaches. The removal of bank cover and consequential instream habitat changes reduced inanga (Galaxias maculatus) densities by a factor of four within months of vegetation removal, showing the importance of instream cover and habitat to inanga. Adult longfin eel (Anguilla dieffenbachii) also became less abundant in the cleared reaches, but elvers (Anguilla spp.) became more abundant. In the second case study, pastoral sections in two small streams draining from native forest catchments were restored in 1995/96 by planting riparian vegetation and preventing stock access. After 10 years, the restoration efforts had more than doubled the numbers of giant kokopu (G. argenteus) and redfin bullies (Gobiomorphus huttoni), slightly increased numbers of banded kokopu (G. fasciatus), and decreased shortfin eel (A. australis) numbers by about 40%. The macroinvertebrate communities changed so that they became more similar to those at upstream native forest reference sites. These two case studies show that riparian margins can influence the composition of the fish and macroinvertebrate communities in small streams through the effects on cover, instream habitat and probably water temperature. Riparian restoration was most effective for the fish species that use cover and pool habitat.  相似文献   

14.
We characterised seasonal and ontogenetic changes in diet and prey energy density of rainbow trout (Oncorhynchus mykiss) in Lake Rotoiti, New Zealand, to better understand the prey requirements of trout in central North Island lakes. Common smelt (Retropinna retropinna) was the dominant prey item of rainbow trout larger than 200 mm (77.8% of diet by weight), followed by kōura (freshwater crayfish Paranephrops planifrons; 6.3%), common bully (Gobiomorphus cotidianus; 5.5%), and kōaro (Galaxias brevipinnis; 3.4%). Juvenile rainbow trout (<200 mm) consumed amphipods, aquatic and terrestrial insects, oligochaetes, tanaid shrimps, and smelt. Trout consumed kōaro only in autumn and winter; consumption of other species did not vary seasonally. The maximum size of smelt consumed increased with increasing trout size, but trout continued to consume small smelt even as large adults. Consumption of larger prey items (kōaro and kōura) also increased with increasing trout size. This study indicates the importance of smelt for sustaining rainbow trout populations, as predation on other species was relatively low. These findings provide a basis for bioenergetic modelling of rainbow trout populations in lakes of the central North Island of New Zealand.  相似文献   

15.
The euphausiid community structure and grazing dynamics were investigated in the West Indian sector of the Polar Frontal Zone during the austral autumn 2004. Subsurface (200m) temperature profiles indicated that an intense frontal feature, formed by the convergence of the Subantarctic Front and the Antarctic Polar Front bisected the survey area into two distinct zones, the Subantarctic Zone (SAZ) and the Antarctic Zone (AAZ). Total integrated chlorophyll a (Chl a) biomass was typical for the region (<25mg Chl a m?2), and was dominated by picophytoplankton. Total euphausiid abundance and biomass ranged from 0.1 m?3 to 3.1 m?3 and from 0.1mg dry weight m?3 to 8.1mg dry weight m?3 respectively, and did not differ significantly between the stations occupied in the SAZ and AAZ (p > 0.05). A multivariate analysis identified two interacting mechanisms controlling the distribution patterns, abundance and biomass of the various euphausiid species, namely (1) diel changes in abundance and biomass, and (2) restricted distribution patterns associated with the different water masses. Ingestion rates were determined for five euphausiid species. Euphausia triacantha had the highest daily ingestion rate, ranging from 1 226.1ng pigment (pigm) ind?1 day?1 to 6 029.1ng pigm ind?1 day?1, whereas the lowest daily ingestion rates were observed in the juvenile Thysanoessa species (6.4–943.0ng pigm ind?1 day?1). The total grazing impact of selected euphausiids ranged from <0.1μg pigm m?2 day?1 to 20.1μg pigm m?2 day?1, corresponding to <0.15% of the areal Chl a biomass. The daily ration estimates of autotrophic carbon for the euphausiids suggest that phytoplankton represent a minor component in their diets, with only the sub-adult E. vallentini consuming sufficient phytoplankton to meet their daily carbon requirements.  相似文献   

16.
Several water quality parameters, marginal vegetation, and the fish community in Lake Ellesmere, a large, shallow, turbid lake situated on the east coast of the South Island, New Zealand, were sampled along selected transects in late summer to determine species spatial patterns. Thirteen species offish were caught, with seven of them comprising major populations, although only four of these were adequately sampled by the method used—they included inanga (Galaxias maculatus), common smelt {Retropinna retropinna), shortfinned eel (Anguilla australis), and common bully (Gobiomorphus cotidianus). Inanga were almost exclusively confined to areas on the western side of the lake which has a convoluted shoreline with a variety of small embayments with scattered vegetation along the margins. Common smelt occupied both marginal and offshore areas, but they too were more abundant along the margins particularly on the western side. Both the common bully and shortfinned eel were widespread and abundant in the lake, although their abundance and biomass were higher within the vicinity of the lake outlet, major inflowing tributaries, and other marginal habitats. All three species of flounders of the genus Rhombosolea were poorly represented in our samples. However, in commercial catches they were reasonably abundant, with the sand flounder (R. plebeia) and yellowbelly (R. leporina) being more common in offshore than inshore catches, whereas the black flounder (R. retiaria) showed no difference in the catches between areas. Our overall findings are consistent with the hypothesis that bottom‐dwelling species (eels, bullies, flounders) are more widely distributed than free‐swimming forms (inanga, common smelt), which were largely confined to areas sheltered from prevailing winds. The highly turbid nature of the lake, primarily because of re‐suspension of fine bottom sediments by frequent winds, is considered an important factor in the distribution of the fish fauna.  相似文献   

17.
Microbioerosion rates and microbioeroder community structure were studied in four Kenyan protected coral-reef lagoons using shell fragments of Tridacna giant clams to determine their response to the influence of terrestrial run-off. Fourteen different microbioeroder traces from seven cyanobacteria, three green algae and four fungi species were identified. The river discharge-impacted reef and ‘pristine’ reef showed similar composition but higher microbioeroder abundance and total cyanobacteria- and chlorophyte-bioeroded areas when compared with the other study reefs. Cyanobacteria dominated during the north-east monsoon (NEM) relative to the south-east monsoon (SEM) season, with algae and cyanobacteria being major microbioeroders in the river-impacted and pristine reefs. The rate of microbioerosion varied between 4.3 g CaCO3 m?2 y?1 (SEM) and 134.7 g CaCO3 m?2 y?1 (NEM), and was highest in the river-impacted reef (127.6 g CaCO3 m?2 y?1), which was almost double that in the pristine reef (69.5 g CaCO3 m?2 y?1) and the mangrove-fringed reef (56.2 g CaCO3 m?2 y?1). The microbioerosion rates measured in this study may not be high enough to cause concern with regard to the health and net carbonate production of Kenya’s coral reefs. Nevertheless, predicted increases in the frequency and severity of stresses related to global climate change (e.g. increased sea surface temperature, acidification), as well as interactions with local disturbances and their influence on bioerosion, may be increasingly important in the future.  相似文献   

18.
Abstract

Thirty sites were sampled in three New Zealand rivers (Waikato, Maitai, and Wakapuaka) during late summer 1977. Samples were collected from just below the surface at mid river or in the tailraces below hydro‐electric dams.

Parameters measured included bacterial numbers (direct counts), heterotrophic potential (Vmax ), adenosine triphosphate (ATP), chlorophyll a (Chi a), and concentrations of nitrogen and phosphorus compounds.

Bacterial populations per millilitre fluctuated threefold (6.4–19.4 × 105) along the Waikato River and were lower and more consistent in the two South Island rivers (1.46–2.55 × 105). In contrast, Vmax varied 5000‐fold in the Waikato River, from a characteristically oligotrophic value of 0.0035 μg. l?1·h?1 (Lake Taupo outlet) to a eutrophic value of 18.4 μg. l?1·h?1 at the Mihi bridge. Vmax for the two South Island rivers ranged from 0.0091 to 0.189 μg. l?1 · h?1.

ATP, Chi a, Kjeldahl nitrogen, nitrate nitrogen, and total phosphorus concentrations for the 20 sites on the Waikato River varied in a similar way to the Vmax and bacterial data. There were large peaks at the Mihi bridge, lower values for the dam tailraces and significant increases for the sites below Hamilton. Concentrations for these parameters were lower and more consistent along the lengths of the two South Island rivers.

Most parameters were significantly correlated with each other for the Waikato River samples. The strongest correlations were between Vmax and bacterial numbers and between Vmax and nitrate nitrogen. In the Maitai and Wakapuaka River series these correlations were also significant, but the only other significant correlations recorded there were between ATP and nitrate nitrogen, and between ATP and bacterial numbers.  相似文献   

19.
Phytoplankton chlorophyll concentrations in the Delaware estuary range over two orders of magnitude and display several maxima over the seasonal cycle. These maxima were found to be regulated both spatially and temporally by light availability. Both the spring chlorophyll maximum, which reaches 50–60 μg chlorophyll l?1 during a Skeletonema costatum dominated bloom, and transient fall blooms (15–20 μg l?1) are focused in mid-estuary. These blooms are regulated spatially by settling out of suspended sediment below the turbidity maximum and both spatially and temporally by physical factors (e.g. river flow) that cause vertical stratification in mid-estuary. In freshwater regions, chlorophyll concentrations display seasonal periodicity correlated with solar irradiance; summer chlorophyll concentrations average 30 μg l?1. These freshwater and mid-estuarine biomass maxima may be correctly predicted using a steady-state light-limitation model. In contrast, summer chlorophyll concentrations in the lower estuary remain below 10 μg l?1 and are not correctly modeled, despite minimum turbidity, and non-nutrient limiting conditions. These chlorophyll concentrations appear to be regulated by a combination of light availability and grazing.Although extremely high anthropogenic nutrient inputs in the freshwater region of the Delaware River provide non-limiting nutrient concentrations throughout the estuary, regulation of phytoplankton growth by light-limitation restricts chlorophyll concentrations below the nuisance levels found in many eutrophic systems.  相似文献   

20.
Lake Waikaremoana, the North Island's deepest lake (248 m), lies in a natural forested catchment, but the lake itself has been modified for hydro‐electric power generation and by the introduction of trout, smelt, and adventive aquatic plants. The lake is a warm monomictic water body of low conductivity (82 μS cm‐1) and a high seasonal water column stability. The waters are oligotrophic, with epilimnetic dissolved reactive phosphorus concentrations typically < 1 mg m‐3. The concentration of NO3‐N is seasonally variable but generally high in winter and spring with maximum epilimnetic values approaching 70 mg m 3. This contrasts with other central North Island lakes. Horizontal variability in surface chlorophyll a is low as are the absolute values (< 1–2 mg m‐3). A notable feature is the formation of a deep chlorophyll maximum within the metalim‐nion comprised largely of Sphaewcystis schweteri as opposed to diatoms and flagellates which normally dominate the epilimnion. Vascular macro‐phytes (maximum biomass 659 g m2 dry weight) extended to 9 m and characeans (maximum biomass 447 g m2dry weight) to 16 m. Total phyto‐plankton primary production was calculated as 4524 tCy‐1 and macrophyte production as 578 t C y‐1. The proportion of macrophyte to phy‐toplankton production (0.14) is higher than in the other deep lakes of the central North Island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号