首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The work is devoted to the study of the oscillation properties of the magnetic and velocity fields of sunspots with typical periods of up to about 104 min. These oscillations were revealed at the beginning of the 1980s (Gopasyuk, 1981) but remain understudied. Using SOHO MDI data and a technique that allows for measurements of magnetic field H and the heliographic coordinates of sunspots φ and λ with higher accuracy than direct measurements of individual pixels, we have studied 72 sunspots observed on the Sun’s visible hemisphere during no less than 9–11 days (±60–70° from the central meridian) with a time resolution of 1 min. Estimates of random errors of a measurement give σ H ≈ 60 Gs, σφ ≈ 0.055°, and σλ ≈ 0.050°. It is found that the main periods of the maximum superlong-period oscillations of sunspots are equal to eight days, according to earlier ground-based measurements. Space observations allow the effect of the Earth’s atmosphere to be totally eliminated; therefore, on the basis of recent data, one can conclude that long-period oscillations of sunspot parameters are a real Sun phenomenon.  相似文献   

2.
The phenomenon of long-period sunspot oscillations with periods from several tens to a thousand minutes is studied using data on the magnetic field strength and sunspot coordinates obtained based on the SOHO MDI data. It has been indicated that oscillations of the sunspot magnetic field strength are related to relative and absolute horizontal oscillation modes, as a result of which certain limitations are imposed on the interpretation of the phenomenon.  相似文献   

3.
It is shown that long-period (T = 10?C20 h) oscillations of the magnetic field in sunspots, combined in bipolar groups, are excited synchronously in the main and tail spots of a group. At the same time, there is no correlation between long-period oscillations of the field of sunspots which are in different active regions, i.e., spaced sunspots oscillate independently. This fact eliminates the question about the apparatus nature of the oscillations of interest (if there is an artifact, oscillations of all sunspots on the visible solar hemisphere would be synchronous!). High-resolution (0.5 angular seconds per pixel) MDI(SOHO) data show a high correlation between long-period oscillations of the magnetic field at isolated points of the sunspot shadow. This points to the fact that the sunspot shadow participates in long-period oscillations as a quite integral physical formation.  相似文献   

4.
An analysis of oscillatory processes with periods not shorter than several tens of minutes in three isolated sunspots, which were observed during identical periods in the optical and radio bands, is illustrated. SDO/HMI magnetograms at an interval of 45 s and radio maps at a wavelength of 1.76 cm, obtained using a Nobeyama radioheliograph (NoRH), have been used. The time profiles, which were constructed based on the NoRH and SDO/HMI data, indicate that the oscillations of the radioemission correlate with those of the sunspot magnetic field. The wavelet spectra and cross-wavelet transform reveal common oscillation periods of 30–40, 70–100, and 150–200 min. The identical oscillation periods, found using fundamentally different methods from ground-based and space observations, confirm the solar nature of these oscillations, which can be interpreted as oscillations of a sunspot as a whole.  相似文献   

5.
The following has been indicated for the cyclotron emission of microwave sources based on a simple modeling of a unipolar sunspot magnetosphere by the magnetic monopole, submerged in subphotospheric layers, and a temperature, changing with altitude as hyperbolic tangent. At insignificant changes in the sunspot magnetic field strength, originating as a result of oscillations of a sunspot as an integrated structure, the oscillation amplitude (in percent) of brightness temperatures of the Stokes I and V parameters at a wavelength of 1.76 cm (NoRH) is an order of magnitude as large as the magnetic field strength amplitude. This amplitude is of the same order of magnitude as the field oscillation amplitude at a wavelength of 5.2 cm (SSRT).  相似文献   

6.
Variations in the photospheric magnetic field in the region of solar flares, related to halo coronal mass ejections (HCMEs) with velocities V > 1500, 1000 < V < 1500, and V < 650 km/s, have been studied based on SOHO/MDI data. Using data with a time resolution of 96 min, it has been indicated that on average the ??B L?? and ??|B L|?? field characteristics increase nonmonotonically during 1?C1.5 days before a flare and decrease during 0.5?C1 days after a flare for groups of ejections with V > 1000 km/s for all considered HCME groups. Angle brackets designate averaging of the measured B L magnetic field component and its magnitude |B L| within an area with specified dimensions and the center coincident with the projection onto the region where the flare center field is measured. It has been established that a solar flare related to an HCME originates when the ??B L?? and ??|B L|?? values are larger than the boundary values in the flare region. Based on 1-min data, it has been found for several HCMEs with V > 1500 km/s that the beginning of powerful flares related to ejections is accompanied by rapid impulsive or stepped variations in ??B L?? and ??|B L|?? near the center of a flare with a size of approximately 4.5°. It has been established that the HCME velocity positively correlates with the |??B L??| value at the flare onset.  相似文献   

7.
Geomagnetism and Aeronomy - Long-period oscillations in the brightness of the Sun as a star have been analyzed on the basis of measurements of the solar light reflected by planets when they come...  相似文献   

8.
Using statistically significant data, we show that the GPS observation method is efficient for revealing the response of the upper atmosphere to global synoptic processes with the help of correlation techniques.  相似文献   

9.
Maps of the main structures and the degree of geothermal studies of the Azores-Gibraltar and Iceland regions are constructed. Computer modeling of the coefficient of velocity of thermal subsidence into the asthenosphere of the Azores segment of the Mid-Atlantic Ridge is performed. According to the results of modeling, this velocity exceeds the mean velocity of thermal subsidence of the mid-ocean ridges of the world ocean by a factor of ∼ 1.5. The high velocity of subsidence of the Azores segment of the ridge is caused by the influence of the hot substance of the plume on the process of subsidence. The distributions of the heat flow in the Horseshoe basin, Alboran Sea, and southern part of the Iberian Peninsula are analyzed. A zone of increased heat flow and seismicity, extending from the Madeira-Torre Ridge through the Horseshoe basin, and farther to the east through the southern parts of Spain and France, is identified for the first time. The identified geothermal zone marks the northern branch of the diffuse boundary between the Eurasian and African plates. In the region of the Alpine chain, this zone joins the southern boundary between the Eurasian and African plates, which runs along the northern part of Africa and the Apennine Peninsula. The European and African plate boundaries outline the identified Western-Mediterranean plate, which mainly consists of the oceanic and thinned continental lithospheres of the Algerian-Provence and Tyrrhenian basins.  相似文献   

10.
The variation of intensity in spectral line wings, which was obtained from observations of the patrol telescope at the Kislovodsk Mountain Astronomical Station of the Pulkovo Observatory, Russian Academy of Science (KMAS) and the Interface Region Imaging Spectrograph (IRIS) space observatory, are considered. A series of observations lasting a few hours near the solar active regions, in which both short- and longperiod oscillations were observed simultaneously during 2014–2015, are analyzed. It is found out that oscillations with a period of 3–5 min can exist at one time and in one place with oscillations with a period of about 100 min. The amplitude of long-period oscillations can be comparable with that for short-period oscillations. The conditions for excitation of the wave processes are considered. Oscillations with a period of 100 min have a weak dependence on the area of the active region.  相似文献   

11.
Based on the magnetopause observations near the Earth by the Prognoz/Interball satellites in 1972–2000, the empirical model of this boundary has been proposed, and the magnetopause behavior at different parameters of the oncoming solar wind has been studied. For the first time, it has been detected that the Earth’s magnetopause is compressed by ∼5% in the direction perpendicular to the plane including the vectors of the solar wind velocity and IMF. At the same time, any dependence of the subsolar magnetopause position on the IMF B z component has not been revealed in the Progrnoz/Interball data. The proposed magnetopause model can be used to model the position and shape of the near-Earth bow shock.  相似文献   

12.
Ambiguity in the inverse problem of retrieval of the mechanical parameters of the Earth’s shell and core from the set of data on the velocities V p and V S , of longitudinal and transverse seismic body waves, the frequencies f i and quality factors Q i , of free oscillations, and the amplitudes and phases of forced nutation is considered. The numerical experiments show that the inverse problem of simultaneous retrieval of the density profile ρ in the mantle-liquid core system and the mechanical quality factor Q μ of the mantle (if the total mass M and the total mean moment of inertia I of the Earth, and V p and V S are constant at all depths) has most unstable solutions. An example of depth distributions of ρ and Q μ which are alternative to the well-known PREM model is given. In these distributions, the values of M and I and the velocities V p and V S at all depths for the period of oscillations T = 1 s exactly coincide with their counterparts yielded by PREM model (T = 1 s); however, the maximum deviations of the ρ and Q μ profiles from those in the PREM model are about 3% and 40%, respectively; the mass and the moment of inertia of the liquid core are smaller than those for the PREM model by 0.75% and 0.63%, respectively. In this model, the root mean square (rms) deviations of all the measured values of f i and Q i from their values predicted by theory are half to third the corresponding values in the PREM model; the values of Δ for natural frequencies of the fundamental tone and overtones of radial oscillations, the fundamental tones of torsional oscillations, and the fundamental tones of spheroidal oscillations, which are measured with the highest relative accuracy, are smaller by a factor of 30, 6.6, and 2 than those in the PREM model, respectively. Such a large ambiguity in the solution of the inverse problem indicates that the current models of the depth distribution of density have relatively low accuracy, and the models of the depth distribution of the mechanical Q in the mantle are extremely unreliable. It is shown that the ambiguity in the models of depth distribution of density considerably decreases after the new data on the amplitudes and phases of the forced nutation of the Earth are taken into account. Using the same data, one may also refine by several times the recent estimates of the creep function for the lower mantle within a wide interval of periods ranging from a second to a day.  相似文献   

13.
This paper presents new data on the upper mantle characteristics, and on seismicity and volcanism in Kamchatka. It is shown that the seismic activity in the Pacific focal layer decreases sharply below that narrow line on which the foci of the active volcanoes are situated. A map of longitudinal wave velocitiesV p in the mantle upper layers under Kamchatka is given. The lowest values ofV p (7.3–7.6 km/sec) are found near the volcanic belt. The graphs Θ=lg (Es/Ep) (h) for the Kamchatka earthquakes indicate that Θmin at the depths of 120–250 km may be caused by a concentration of magmatic melts. A map of bodies (magma chambers?) screening S- and P-waves at the depths of 30–100 km under Kamchatka has been compiled. These bodies are mainly located under the belt of active volcanoes.  相似文献   

14.
The paper presents a review and analysis of new seismic data related to the structure of the mantle beneath the East European platform. Analysis of observations of long-range profiles revealed pronounced differences in the structure of the lower lithosphere beneath the Russian plate and the North Caspian coastal depression. The highest P-velocities found at depths around 100 km are in the range 8.4–8.5 km s?1. Deep structure of the Baltic shield is different from the structures of both these regions. No evidence of azimuthal anisotropy in the upper mantle was found. A distribution of P-velocity in the upper mantle and in the transition zone consistent with accurate travel-time data was determined. The model involves several zones of small and large positive velocity gradients in the upper mantle, rapid increases of velocity near 400 and 640 km depths and an almost constant positive velocity gradient between the 400 and 640 km discontinuities. The depth of the 640 km discontinuity was determined from observations of waves converted from P to SV in the mantle.  相似文献   

15.
长周期大地电磁信号强度弱,频带宽,容易受到多种噪声的干扰,观测数据不满足加性、平稳和最小相位特性.因而,其数据处理仍有较多难点.常规的大地电磁数据处理方法是相似的,其主要差别是在时域或频域压制噪声、提高信噪比的数学方程和算法不同.为了提高数据处理的可靠性,拓宽方法的选择范围,本文介绍了广泛使用的PRC_MTMV和较少使用的EMTF两套软件系统的处理原理、参数配置以及用于处理长周期大地电磁资料的基本流程.利用两套系统对实测数据进行处理,对比发现,PRC_MTMV处理得到的视电阻率和相位曲线总是比EMTF的曲线平滑;EMTF的远参考处理对视电阻率曲线高频部分有较大的改善,说明EMTF能够有效克服磁场干扰;将同一测点长周期和宽频测深曲线拼接,二者的效果是相当的,表明EMTF能够满足需要并用于处理长周期大地电磁数据.  相似文献   

16.
17.
18.
The morphological features of wave-like ionospheric disturbances with periods of 1–2 h and the spatial extent exceeding 1000 km are studied. Oblique-incidence sounding data of the ionosphere, obtained in eastern Siberia during several continuous monthly experiments on three radio paths from 2006 to 2010, have been used. Large-scale traveling ionospheric disturbances generated during magnetic storms and large-scale wave-like ionospheric disturbances registered during geomagnetically quiet periods are considered. Small-scale ionospheric structures were also observed against a background of large-scale traveling iono-spheric disturbances considered in this study.  相似文献   

19.
The characteristics of different-scale acoustic gravity waves (wavelengths of 100–1200 km, periods of 10–50 min) under different geophysical conditions have been studied using a numerical model for calculating the vertical structure of these waves in a nonisothermal atmosphere in the presence of an altitudedependent background wind and in a situation when molecular dissipation is taken into account. It has been established that all considered acoustic gravity waves (AGWs) effectively reach altitudes of the thermosphere. The character of the amplitude vertical profile depends on the AGW scales. The seasonal and latitudinal differences in the AGW vertical structure depend on the background wind and temperature. A strong thermospheric wind causes the rapid damping of medium-scale AGWs propagating along the wind. Waves with long periods to a lesser degree depend on dissipation in the thermosphere and can penetrate to high altitudes. A change in the geomagnetic activity level affects the background wind vertical distribution at high latitudes, as a result of which the AGW vertical structure varies.  相似文献   

20.
The Gunzhin system of NE-trending active faults is described on the basis of results of special seis-motectonic studies carried out for the first time around Ulan Bator, Mongolia. This system crosses watershed parts of stream valley. It is named after one of them. The total length of the fault segment traced on aerial photos is 15–20 km. In valleys of some temporary stream flows there are considerable visible horizontal displacements attaining 20–25 m, which testify to the right lateral slip (Khundullun River). Revealed structural parageneses of thrusts and overthrusts, divergent as a fan-shaped system to the both sides from the axial sub-vertical shift zone, are reliably confirmed by the data of geophysical investigations. Taking into account the known correlation relationships between seismodislocation parameters (length and maximum displacement amplitude) and earthquake magnitudes, it is possible to suggest that the Gunzhin Fault generated two paleoearthquakes with the magnitude of about 7.0 in the Late Holocene. It means that displacements along that fault could attain the intensity of 9–10 degrees in the Ulan Bator territory according to the MSK-64 scale. This result must be taken into account in estimation of seismic hazard in the territory discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号