首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Geomagnetism and Aeronomy - Millimeter (93 and 140 GHz) emission of the М6.4 solar flare detected on April 2, 2017 in the NOAA 12644 active region by the RT-7.5 telescope of the Bauman Moscow...  相似文献   

2.
The powerful solar flares that occurred on September 4–10, 2017 are analyzed based on a quantitative diagnostics method for proton flares developed at the Institute of Terrestrial Magnetism, the Ionosphere and Radio-Wave Propagation (IZMIRAN) in the 1970–1980s. We show that the fluxes and energy spectra of the protons reached the Earth with the energies of tens of MeV qualitatively and quantitatively correspond to the intensity and frequency spectra of the microwave radio bursts in the range of 2.7–15.4 GHz. Specifically, the flare of September 4 with a peak radio flux S ~ 2000 sfu at the frequency f ~ 3 GHz (i.e., with the soft radio spectrum) was accompanied by a significant proton flux J (>10 MeV) ~100 pfu and a soft energy spectrum with the index γ ~3.0, while the strong flare on September 10 with S ~ 21000 sfu at f ~ 15 GHz (i.e., with the hard radio spectrum) led to a very intense proton event with J (>10 MeV) ~1000 pfu with a hard spectrum (γ ~ 1.4), including the ground level enhancement (GLE72). This is further evidence that microwave radio data can be successfully used in diagnostics of proton flares independently of a specific source of particle acceleration at the Sun, in particular, with the IZMIRAN method.  相似文献   

3.
The ordinary mode of gyrosynchrotron radiation was identified to be predominant in some segments of flare loops in solar flares of July 19, 2012, and October 22, 2014. These events were studied by investigation of the quasi-transverse propagation effect on the observed polarization. The analysis involved reconstruction of the magnetic field topology at the linear force-free approximation based on the data of the SDO HMI space telescope and the subsequent simulation of radio emission of flare loops with the GX Simulator software package. The quasi-transverse propagation effect was established to be characteristic for both events, but its influence on the radio emission polarization at a frequency of 17 GHz was observed only in the October 22, 2014 flare.  相似文献   

4.
We present a detailed study of a 1B/M6.9 impulsive flare combining high time resolution (1 ms) and instantaneous emission source localization observations at submillimeter frequencies (212 GHz), obtained with the solar submillimeter telescope (SST), and Hα data from the Hα solar telescope for argentina (HASTA). The flare, starting at 16:34 UT, occurred in active region (AR) 9715 (NOAA number) on November 28, 2001, and was followed by an Hα surge. We complement our data with magnetograms from the Michelson Doppler Imager (SOHO/MDI). SST observed a short impulsive burst at 212 GHz, presenting a weak bulk emission (of about 90 sfu) composed of a few shorter duration structures. The integrated Hα and the 212 GHz light curves present a remarkable agreement during the impulsive phase of the event. The delay between both curves stays below 12 s (the time resolution of the Hα telescope). The flare as well as the surge are linked to new flux emergence very close to the main AR bipole. Taking into account the AR magnetic field evolution, we infer that magnetic field reconnection, occurring at low coronal levels, could have been at the origin of the flare; while in the case of surge this would happen at the chromospheric level.  相似文献   

5.
We performed a comparative study of geomagnetic variations, which are associated with sudden ionospheric disturbances (SIDs) caused by great X-class solar flares on July 14, 2000 (Bastille flare) and on October 28, 2003 (Halloween flare). Intense fluxes of solar X-rays and EUV radiation as well as solar energetic particles (SEP) were considered as sources of abundant ionization of the ionosphere and upper atmosphere. Flare-initiated SIDs are revealed as transient geomagnetic variations, which are generated by enhanced electric currents flowing mainly in the bottom-side ionosphere. Those so-called solar flare effects (SFEs) were studied by using of geomagnetic data from INTERMAGNET worldwide network of ground-based magnetometers. In subsolar region the SFE is mainly controlled by the flare X-rays and/or EUV radiation. We found that in the Halloween flare the contribution of X-rays was comparable with the EUV, but in the Bastille flare the EUV flux was dominant. The ionization at high latitudes is generated by the SEP, which energy flux is comparable and even exceeds the solar electromagnetic radiation in that region. It was shown that in the Halloween event the pattern of SFE is formed by a two-vortex current system, which is similar to the quiet day Sq current system. However, during the Bastille flare, the pattern of induced currents is quite different: the northern vortex shifts westward and southern vortex shifts eastward such that the electroject is substantially tilted relative to the geomagnetic equator. From numerical estimations we found that at middle latitudes the SEP-initiated geomagnetic effect becomes comparable with the effects of solar electromagnetic radiation. It was also shown that the SEP contribute to the SFE in the nightside hemisphere. The revealed features of the SEP impact to the ionosphere were found in a good agreement with the theory of energetic particle penetration to the bottom-side magnetosphere.  相似文献   

6.

This paper presents the results of observation of a rare phenomenon—a narrowband increase in the brightness of cyclotron radiation of one of the structural details of a radio source located in the solar corona above the solar active region NOAA 12182 in October 2014 at a frequency of 4.2 ± 0.1 GHz. The brightness of radiation in the maximum of the phenomenon has reached 10 MK; its duration was equal to 3 s. The exact location of the source of the narrowband cyclotron radiation is indicated: it is a corona above a fragmented (4-nuclear) sunspot, on which a small UV flare loop was closed.

  相似文献   

7.
The correlation between the pulsed and smooth components of ultraviolet radiation and hard X-rays from solar flares has been interpreted on the basis of the time behavior of the energy flux penetrating from the magnetic field reconnection region to the boundary of the heated region. It has been shown that the time behavior of the primary flare energy flux is easily reconstructed from the time profile of the intensity of hard X-rays, and the time profile of the intensity of ultraviolet radiation represents the release of the flare energy in the flare transient layer. The smooth or pulsed component of the ultraviolet radiation depends on the form of the primary energy release. Information on the dynamics of the heating process and the formation and equalization of the gas pressure in the flare transient layer has been obtained from the observed temperature dependence of the emission measure. The described scheme explains the set of flare phenomena and the correlation between hard X-rays with pulsed ultraviolet bursts.  相似文献   

8.
The correlation between the pulsed and smooth components of ultraviolet radiation and hard X-rays from solar flares has been interpreted on the basis of the time behavior of the energy flux penetrating from the magnetic field reconnection region to the boundary of the heated region. It has been shown that the time behavior of the primary flare energy flux is easily reconstructed from the time profile of the intensity of hard X-rays, and the time profile of the intensity of ultraviolet radiation represents the release of the flare energy in the flare transient layer. The smooth or pulsed component of the ultraviolet radiation depends on the form of the primary energy release. Information on the dynamics of the heating process and the formation and equalization of the gas pressure in the flare transient layer has been obtained from the observed temperature dependence of the emission measure. The described scheme explains the set of flare phenomena and the correlation between hard X-rays with pulsed ultraviolet bursts.  相似文献   

9.
The kinetics of beam electron precipitation from the top of a loop into the solar atmosphere with density gradients and an increasing magnetic field have been generally described. The Fokker-Planck equations are solved with regard to Coulomb collisions and the effect of the electric field induced by this beam. The photon spectra and polarization degree in hard X-ray (10–300 keV) and microwave (1–80 GHz) emissions are simulated under different assumptions regarding the beam electron distribution function. The simulation results are compared with the flare observations on March 10, 2001, and July 23, 2002, visible at different position angles. It has been indicated that the coincidence of the theoretical photon spectra with simultaneous observations of the hard X-ray and microwave emissions of these flares is the best for models that not only take into account collisions, but also the electric field induced by electron fluxes propagating in flare loops with very weakly or moderately converging magnetic fields.  相似文献   

10.
Unique measurements by a solar submillimeter radio telescope (SST) have been carried out in the sub-THz radiation at 212 and 405 THz over the past decade. The spectrum of RF radiation in this region increased with frequency for the three flares of November 2 and 4, 2003, and December 6, 2006, and the flux value reached 5 × 103?2 × 104 sfu at 405 GHz (Kaufman et al., 2009). In this work, we consider a set of nonlinear equations for an accelerated electrons beam and the Langmuir wave energy density. The distribution functions of the accelerated electron beam and wave energy density are calculated taking into account Coulomb collisions, electron scattering by waves, and wave scattering by plasma ions. In addition, the source of accelerated particles and the heat level of the Langmuir turbulence are specified. The beam and plasma parameters are chosen based on the aims of a problem. The plasma concentration varies from n = 1013 to 1015 cm?3, the electron plasma frequency f p = (3 × 1010?3 × 1011) Hz in this case. The ratio of plasma and beam concentrations, sufficient to explain the value of the radio flux at a frequency of 300 GHz, is n b/n = 10?3. The Langmuir turbulence is excited due to the instability of the accelerated electron beam with an initial distribution function of the ??bump-in-tail?? type. Then, the parameters of radiowaves are calculated in the sub-THz range under the assumption of coalescence of two plasma waves. The calculation results show that a sub-THz radio flux can be obtained under the condition of injection of accelerated electrons. The fine time structure of radio flux observed is easily simulated based on this statement by the pulsed time structure of electron beams and their dynamics in overdense plasma. X-ray and gamma radiation was recorded during the events under study. Hard X-ray radiation is bremsstrahlung radiation from accelerated electron beams.  相似文献   

11.
As deduced from the data with high spatial resolution obtained at the radio heliographs of the Siberian Solar Radio Telescope (SSRT, 5.7 GHz) and the Nobeyama radio heliograph (NoRH, 17 GHz), radio brightness centers in the distribution of the Stokes parameter I are shifted relative to the distribution of the parameter V 1–2 days before an intense flare. It has been shown that this phenomenon can be related to the behavior of quasi-stationary sources over the inversion line of the radial component of the magnetic field (neutral-line associated sources (NLSs)). These sources have a brightness temperature up to 106 K and a circular polarization up to 90%. The origination of NLSs is associated with the outflow of a new magnetic flux into the atmosphere of an active region that is a classical factor of the flare activity. Therefore, an NLS is a precursor of power solar flares and can be used as a forecast factor. Owing to the high resolution of the SSRT, the deviation of the observed polarization distribution of microwave radiation of the active region from the normal one within the solar disk zone containing the active region can be used as a precursor of the preflare state of the active region. As a result, the single-frequency Tanaka-Enome criterion is modified. The use of the data from two radio heliographs (SSRT and NoRH) allows us to propose a two-frequency criterion of normal longitudinal zones that is more efficient for short-term forecasting of solar flares. Preflare features associated with the displacement of brightness centers in I and V, which is manifested as the transformation of NLSs into spot sources, are fine attributes added to forecast according to the two-frequency criterion. This is illustrated by an example of active region 10930, which produced power proton flares on December 6 and 13, 2006.  相似文献   

12.
This paper continues the cycle of authors’ works on the detection of precursors of large flares (M5 and higher classes) in active regions (ARs) of the Sun by their microwave radiation and magnetographic characteristics. Generalization of the detected precursors of strong flares can be used to develop methods for their prediction. This paper presents an analysis of the development of NOAA AR 12242, in which an X1.8 flare occurred on December 20, 2014. The analysis is based on regular multiazimuth and multiwavelength observations with the RATAN-600 radio telescope in the range 1.65–10 cm with intensity and circular polarization analysis and data from the Solar Dynamics Observatory (SDO). It was found that a new component appeared in the AR microwave radiation two days before the X-flare. It became dominant in the AR the day before the flare and significantly decreased after the flare. The use of multiazimuth observations from RATAN-600 and observations at 1.76 cm from the Nobeyama Radioheliograph made it possible to identify the radio source that appeared before the X-flare with the site of the closest convergence of opposite polarity fields near the neutral line in the AR. It was established that the X-flare occurred 20 h after the total gradient of the magnetic field of the entire region calculated from SDO/HMI data reached its maximum value. Analysis of the evolution of the microwave source that appeared before the X-flare in AR 12242 and comparison of its parameters with the parameters of other components of the AR microwave radiation showed that the new source can be classified as neutral line associated sources (NLSs), which were repeatedly detected by the RATAN-600 and other radio telescopes 1–3 days before the large flares.  相似文献   

13.
The evolution of the microwave radiation from four active regions, where strong X-ray flares (X-class, GOES) occurred in 2011, has been studied. Daily multiwavelength RATAN-600 radio observations of the Sun in the 1.6–8.0 cm range have been used. It has been indicated that the radiosource above the photospheric magnetic field neutral line (above the region with the maximal convergence of the fields opposite in sign) becomes predominant in the structure of the active region microwave radiation one to two days before a powerful flare as in the eruptive events previously studied with RATAN-600. The appearance of such a radiosource possibly reflects the current sheet formation in the corona above the active region. The energy necessary for a flare is stored in the magnetic field of active region, which can be considered as a factor for predicting a powerful flare.  相似文献   

14.
The oscillations with a period of about 6 and 12 s in the nonthermal radiation of a solar flare occurred on November 5, 1992, are identified. The time-translated profiles of hard X-ray and microwave radiation flux are characterized by an anticorrelation. The specific features of the radiation fine time structure are interpreted using the model of the coronal magnetic mirror where fast magnetoacoustic modes are excited.  相似文献   

15.
In 2001–2003, 45 flares of hard X ray (HXR) and gamma ray radiation, identified with a particular active region (AR) that produced each event, were recorded during the experiments onboard the Russian Solar Observatory CORONAS-F using the SONG (solar neutrons and gamma ray quanta) instrument. The solar corona structure and dynamics above these ARs is studied on the basis of the microwave observations with two Russian radio telescopes RATAN-600 and Siberian Solar Radio Telescope (SSRT). The results are illustrated using the active region NOAA 9601 and flare of September 5, 2001 (~ 1430 UT) as an example. The flare is interesting because the energy of its gamma radiation exceeded 1 MeV, while its power was only M6.0 in soft X rays. Such a combination of the event characteristics is not too frequent, which indicates that the spectrum of the studied event was rather hard. The type of the source of microwave radiation above NOAA 9601 has been determined. Some properties of this-type sources of a diagnostic value for detecting ARs capable of producing HXR and gamma radiation are indicated.  相似文献   

16.
风云三号C星微波湿温探测仪的定标和验证   总被引:6,自引:0,他引:6       下载免费PDF全文
风云三号C星(FY-3C)已经于2013年9月23日发射升空,其上装载的微波湿温探测仪(MWHTS)已于9月30日开机正常工作.MWHTS具有对大气温度和湿度垂直分布进行同步探测的能力.MWHTS为跨轨扫描式微波辐射计,在89~191GHz毫米波段内设置了十五个探测通道,其中包括118.75GHz氧气吸收线附近的8个大气温度探测通道,183.31GHz水汽吸收线附近的5个大气湿度探测通道,以及89GHz和150GHz两个窗区通道.设置在118.75GHz的一组毫米波探测通道是国际上业务卫星首次使用的大气探测通道,这组通道和183.31GHz通道对大气进行联合探测,将获得更加精细的大气温湿度垂直分布数据,为数值预报和气候研究提供丰富信息.为保证MWHTS观测资料的定量应用,对仪器性能和定标精度进行了在轨测试.利用MWHTS在轨正常工作后的三个月数据,对仪器在轨定标的基础数据:冷空和黑体计数值,黑体和仪器温度进行监测分析和质量检验,经过质量检验的在轨定标基础数据,结合发射前真空试验得到的非线性订正项在轨定标生成MWHTS观测亮温数据.评估MWHTS在轨辐射定标结果的精度和偏差特性使用了三种方法:1通过场地定标试验获取大气温湿廓线和地面温度等大气参数信息,结合微波逐线正演辐射传输模式MonoRTM(Monochromatic Radiative Transfer Model)模拟MWHTS的上行微波辐射亮温,与MWHTS实际观测结果进行对比分析;2两个通道特性一致的同类星载被动微波载荷同时观测同一目标,观测亮温的差异主要取决于两个载荷的定标系统偏差.选取美国SNPP上搭载的微波探测仪器ATMS作为MWHTS的参考载荷,基于SNO(simultaneous nadir overpass)技术,对两个仪器的观测亮温进行交叉比对,观测亮温时空匹配及均匀性检验的条件为:观测时间差异小于20min,观测像元中心距离小于3km,观测角度在星下点附近差异小于5°,观测像元周围3×3像元内的亮温标准差小于1K;3基于美国国家环境预测中心的全球数据同化系统GDAS(Global Data Assimilation System)数据,利用快速辐射传输模式CRTM(Community Radiative Transfer Model)对MWHTS各通道亮温进行正演模拟,模拟结果(O)和仪器实际观测的亮温(B)之间的差异记为"O-B",对偏差值"O-B"进行统计特征分析.仪器中心频率的变化、正演模式模拟精度和模式输入廓线自身的误差都会对"O-B"产生影响.但是对于首次使用的探测频点而言(如118.75GHz通道),由于国际上没有同类载荷可以进行交叉比对,借助于正演辐射传输模式计算得到"O-B"偏差的分析结果可以在一定程度上反映仪器整体定标情况.外场地定标试验结果显示除通道14外,其他14个通道的亮温差都在1.3K以内;与同类载荷ATMS的在轨观测进行直接交叉比对表明通道14与ATMS的亮温偏差最大,但中心频点一致的5个水汽探测通道的标准差都小于1K;将MWHTS观测结果和正演辐射传输模式模拟结果即"O-B"进行偏差分析显示,靠近118.75GHz吸收线中心的通道2—6"O-B"标准差小于0.5K,其他通道"O-B"标准差和ATMS相应通道的结果相当;MWHTS观测和模拟偏差随角度变化的研究表明通道1,7~13和15观测结果对角度有一定依赖性.  相似文献   

17.
The influence of helio/geophysical factors on the solar energy input to the lower atmosphere has been studied at the network of actinometric stations of Russia in different latitudinal belts. It was found that there are appreciable changes in the half-yearly values of total radiation associated with galactic cosmic ray (GCR) variations in the 11-yr solar cycle, the increase of GCR flux being accompanied by a decrease of the total radiation at higher latitudes and by its increase at lower latitudes. Auroral phenomena and solar flare activity are likely to affect the solar radiation input to the high-latitudinal belt together with GCR variations, the increase of both these factors resulting in the decrease of total radiation. The changes found in the total radiation fluxes in the lower atmosphere seem to be related to the cloud cover variations associated with the solar and geophysical phenomena under study. The variations of the solar radiation input in the 11-yr-cycle amounting to ±4–6% may be an important factor affecting tropospheric dynamics.  相似文献   

18.
This paper reports the obtained analysis data on the spatio-temporal evolution of sources of microwave and hard X-ray pulsations for the SOL2011-06-07T06:16 event based on the observation data of the RHESSI spectrometer and the Nobeyama radioheliograph. The position of the considered pulsation sources changes from one pulsation to another. The motion of the X-ray sources is predominantly longitudinal in nature in relation to the inversion line of the magnetic polarity. The obtained analysis data on the evolution of X-ray sources are in good agreement with the results of the radio image analysis. The radio brightness center at 34 GHz changes its position from one pulsation to another along the inversion line of the magnetic polarity throughout the burst. According to the AIA/SDO telescope data, the flare region images in the ultraviolet range demonstrate a well-defined eruption of the magnetic flux rope. The flare energy release can likely be triggered by the erupting magnetic flux rope; the successive interaction of different parts of it with different loops of the surrounding magnetic arcade can result in their successive “ignition” and, as a consequence, lead to the observed changes in the position of X-ray and microwave sources from one pulsation to another.  相似文献   

19.
2001年4月2日, 太阳爆发了一个近年来X射线通量最大的一次耀斑并伴有质子事件, 利用“资源一号”卫星星内粒子探测器和神舟二号飞船X射线探测器的观测资料, 对这一事件的高能粒子响应进行了特例研究. “资源一号”卫星运行于太阳同步轨道, 高度约800km, 和宁静时期的统计结果对比, 这次耀斑后, 星内粒子探测器在地球极盖区(地球开磁场区)观测到耀斑粒子的出现, 这是宁静时期没有的; 神舟二号飞船轨道高度400km, 倾角为42°, X射线探测器在42°中高纬地区也观测到高能电子通量比宁静时明显的增加, 这表明, 太阳耀斑引起的近地空间辐射环境的变化遍及纬度约40°以上的区域, 甚至在40°N附近400 km左右的高度上仍然有响应. 但是, 中高纬度、极光带和极盖区的粒子来源, 加速机制和响应方式却不一定相同, 需要分别讨论. 资料分析和对比还表明, 质子事件的强度并不一定和耀斑的X射线通量成正比, 因此, 近地空间高能粒子对耀斑的响应也不是完全决定于X射线强度.  相似文献   

20.
The observations of active region (AR) NOAA 10792 in the Ca II 8498 ? line with an ATB-1 solar telescope at the Sternberg State Astronomical Institute, Moscow State University (SSAI MSU) on July 30, 2005, are illustrated, and the events are analyzed using the data obtained on spacecraft. Three flares and accompanying coronal mass ejections (CMEs) are considered. It has been indicated that the beginning of the first compact CME lagged behind the flare onset by 3 min. Plasma ascended with acceleration that reached 0.4 km/s2 at the flare maximum. The matter was also apparently accelerated after the flare maximum, since an ejection could only appear at the edge of the occulting C 2 LASCO coronograph disk at 0557 UT when acceleration is about 0.5 km/s2. The second CME (of the halo type) leaded the beginning of the corresponding flare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号