首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
It has been indicated that special moments (turning points), when certain characteristics of the latitudinal (equatorward) drift of the sunspot drift zone suddenly change, exist in each 11-year solar cycle. The moment when a sunspot formation low-latitude boundary minimum (T2), coordinated in time with the end of a polar magnetic field polarity reversal, exists has a special place among these points. A conclusion has been drawn that it is impossible to reconstruct polarity reversal moments in the past based on information about turning points T2. The average velocities of the latitudinal drift of the minimal, average, and maximal sunspot group latitudes have been calculated. It has been indicated that the closeness of the relationship between the first two velocities and the maximal activity amplitudes in the cycles differ substantially for the first (before point T2) and second (after point T2) cycle parts. The corresponding values of the correlation coefficients increase substantially in the second cycle (after point T2). It has been established that a relationship exists between some velocities calculated in these cycles and the activity amplitudes at maximums of the next cycles. A model for predicting future cycle maximums has been constructed based on this conclusion. The probable average annual Wolf number at a maximum of cycle 24 has been determined (W(24) = 93).  相似文献   

2.
Using sunspot data for cycles 12 to 23, we have investigated relations of some latitude characteristics of sunspot groups to the 11-year cycle amplitude at different phases. We have revealed a high correlation (with correlation coefficients >0.9) between the middle latitude of sunspot groups at phases of rise, maximum, and decay, on the one hand, and the amplitude of the corresponding cycle, on the other hand. We have shown that the maxima of the velocity of the motion of the sunspot formation zone to the equator have a special physical meaning: the rise phase of the 11-year cycle is characterized by significant correlations between the cycle amplitude and the maximum for the lowest boundary, and the cycle decay phase is characterized by the same maximum for the highest boundary. We have built equations allowing one to determine the amplitude of the 11-year cycle on the basis of data on the given latitudinal characteristics of sunspots groups.  相似文献   

3.
Based on an analysis of a large array of meteorological data, we have shown that surface air temperatures differ significantly in years of sunspot maxima and minima for different months and latitudes and longitudes of observation points. This difference is the greatest at high latitudes of 60–83°; it is equal to +2.07 ± 0.28°C in February in the longitudinal range of 170 ± 190° and −1.41 ± 0.29°C in November in the longitude range of 150 ± 170°.  相似文献   

4.
大地震纬向分布的基本规律与动力学解释   总被引:2,自引:0,他引:2  
统计了 1 90 0~ 1 999年全球大地震 (M≥ 7.0 )的纬向分布 ,进一步证实了全球大地震的分布的确存在不对称问题 ,北、南半球大地震发生的次数不对称 ,北半球多 ,南半球少 ;二个半球大地震集中分布的区域不对称 ,北半球大地震集中分布的区域为 1 5°~ 55°,南半球集中分布的区域为 0°~ 35°;北半球有 3个明显的大地震分布区间 ,即 1 5°~ 2 0°,35°~ 45°,50°~ 55°;两极地区无大地震。并且导出了计算日、月对地壳纬向水平引潮力达到极值的计算公式 ,根据日、月水平引潮力达到极值时的纬度分布的规律 ,较好地解释了全球大地震分布的不对称问题  相似文献   

5.
We study and compare characteristics of the sunspot group latitude distribution in two catalogs: extended Greenwich (1874–2014) and Schwabe (1825–1867) (Arlt et al., 2013). We show that both datasets reveal similar correlations between the latitude and amplitude characteristics of the 11-year cycle: the latitude dispersion correlates with the current activity and the sunspot mean latitude at the cycle’s maximum is proportional to its amplitude. This agrees with the conclusions drawn in (Ivanov et al., 2011; Ivanov and Miletsky, 2014) for the Greenwich catalog. We show that the latitude properties of the sunspot distribution are much more tolerant to gaps in observational data than traditional amplitude indices of activity. Therefore, the discovered correlations can be used for estimation of the observation quality and independent normalization of the activity levels in spotty pre-Greenwich data. We exemplified this using the Schwabe catalog. In addition, we show that the first part of the Schwabe data probably contains errors in sunspot latitudes, which lead to overestimation of the sunspot latitude dispersions.  相似文献   

6.
The results of investigations of the latitudinal distribution of annual variation of the geomagnetic field level in the seasons of 1964 (International Quiet Sun Year) using the data from 95 world magnetic observatories located at various longitudes in the latitude range 83° N–90° S are reported. The latitudinal features of the X, Y, and Z components of the geomagnetic field have been analyzed. It has been shown that the amplitudes (summer-winter differences) of the annual variation are maximal in the polar regions, decrease continuously to zero towards the equator, and are identical for both the Northern and Southern hemispheres with a half-year delay (local summer). The amplitudes of the equinox-winter difference in the equinox periods are smaller than those in summer, but are manifested simultaneously in the Northern and Southern hemispheres. An equivalent circumpolar current system has been constructed, which is responsible for the annual variation of the geomagnetic field level. Its parameters have been determined.  相似文献   

7.
Running waves at the chromospheric level (Hα) in sunspots are studied. Propagating 3-min oscillations are shown to be typical of many spots. Presumably, they propagate along the vertical magnetic-field lines. Their propagation speed is measured. According to our analysis, the 5-min oscillations propagating in the penumbral chromosphere are not a continuation of the 3-min umbral oscillations. The wavelength and propagation speed of the running penumbral waves are determined.  相似文献   

8.
One option for a stationary model of the asymmetric sunspot previously presented by the authors is considered. It is shown that the presence of sub-Alfvénic Evershed flows in the sunspot penumbra has almost no effect on the temperature distribution in the dense photospheric layers of the sunspot but significantly lowers the temperature of the chromosphere and the lower corona above the sunspot penumbra up to heights of 5–6 Mm.  相似文献   

9.
Ground-based geomagnetic Pc5 (2–7 mHz) pulsations, caused by the passage of dense transients (density disturbances) in the solar wind, were analyzed. It was shown that intensive bursts can appear in the density of the solar wind and its fluctuations, up to Np ~ 30–50 cm3, even during the most magnetically calm year in the past decades (2009). The analysis, performed using one of the latest methods of discrete mathematical analysis (DMA), is presented. The energy functional of a time-series fragment (called “anomaly rectification” in DMA terms) of two such events was calculated. It was established that fluctuations in the dynamic pressure (density) of the solar wind (SW) cause the global excitation of Pc5 geomagnetic pulsations in the daytime sector of the Earth’s magnetosphere, i.e., from polar to equatorial latitudes. Such pulsations started and ended suddenly and simultaneously at all latitudes. Fluctuations in the interplanetary magnetic field (IMF) have turned up to be less geoeffective in exciting geomagnetic pulsations than fluctuations in the SW density. The pulsation generation mechanisms in various structural regions of the magnetosphere were probably different. It was therefore concluded that the most probable source of ground-based pulsations are fluctuations of the corresponding periods in the SW density.  相似文献   

10.
Solar variability is controlled by the internal dynamo which is a non-linear system. We develop a physical–statistical method for forecasting solar activity that takes into account the non-linear character of the solar dynamo. The method is based on the generally accepted mechanisms of the dynamo and on recently found systematic properties of the long-term solar variability. The amplitude modulation of the Schwabe cycle in dynamo's magnetic field components can be decomposed in an invariant transition level and three types of oscillations around it. The regularities that we observe in the behaviour of these oscillations during the last millennium enable us to forecast solar activity. We find that the system is presently undergoing a transition from the recent Grand Maximum to another regime. This transition started in 2000 and it is expected to end around the maximum of cycle 24, foreseen for 2014, with a maximum sunspot number Rmax=68±17. At that time a period of lower solar activity will start. That period will be one of regular oscillations, as occurred between 1730 and 1923. The first of these oscillations may even turn out to be as strongly negative as around 1810, in which case a short Grand Minimum similar to the Dalton one might develop. This moderate-to-low-activity episode is expected to last for at least one Gleissberg cycle (60–100 years).  相似文献   

11.
Possible effects of signal reception from different electrojet heights in a skewness of auroral coherent spectra are studied assuming that the “inherent” spectral line due to plasma turbulence is of type-2 and symmetrical. For reasonable ionospheric parameters, the altitude integrated spectra are expected to be skewed negatively for positive mean Doppler shift, in agreement with radar observations at small aspect angles. However, the spectra could be skewed positively if the turbulent layer or the electron density profile is shifted to high altitudes of \sim120 km. This change of spectral shape will not be observed experimentally if, at the same time, either the electron collision frequency is enhanced or the “inherent” spectral width is increased. Observational results are discussed in view of the predictions given.  相似文献   

12.
Why does a sunspot look the way it does? Steven Tobias and Nigel Weiss find answers to this question, by relating new high-resolution observations to recent theoretical studies of the spot's magnetic field.  相似文献   

13.
纬向带在大震预报中的意义   总被引:2,自引:1,他引:2  
讨论了纬向带在8级大震预报中的意义.论证了这些纬向带具有地球深部的背景.在它们与一些弧形构造和V形构造交会的部位易于发生8级大震.  相似文献   

14.
The stochastic model has been widely used for the simulation study. However, there was a difficulty in the reproduction of the skewness of observed series and so the stochastic model for the skewness preservation was appeared. While the skewness in the residuals of the stochastic model has been considered for the skewness preservation this study uses a random resampling technique of residuals from the stochastic models for the simulation study and for the investigation of the skewness coefficient. The main advantage of this resampling scheme, called the bootstrap method is that it does not rely on the assumption of population distribution and this study uses the combined model of the stochastic and bootstrapped models. The stochastic and bootstrapped stochastic (or combined) models are used for the investigations of skewness preservation and of the reproduction of probability density function between the simulated series. The models are applied to the annual and monthly streamflows of Yongdam site in Korea and Yakima river, Washington, USA for the streamflow simulation study then the statistics and probability density functions for the observed and simulated streamflows are compared. As the results the bootstrapped stochastic model reproduces the skewness and probability density function much better than the stochastic model. This evidences suggest that the bootstrapped stochastic model might be more appropriate than the stochastic model for the preservation of skewness and for simulation purposes of the series.  相似文献   

15.
A pronounced difference exists between the theory, which definitely indicates that magnetospheric oscillations are anharmonic, and the experimental study of geomagnetic pulsations. The experimental study of the nonlinearity of the Pc5 pulsation amplitude latitudinal profile (the range of periods is 150–600 s) is considered. The Pc5 registrations at the IMAGE meridional chain of station were used to search for nonlinear distortions of the profile. Using a specific event, it has been indicated that the Pc5 amplitude peak shifts northward along the meridian with decreasing oscillation amplitude. The coefficient of nonlinear distortions in the latitudinal profile has been determined based on the measurements. The main conclusion consists in that a delicate problem of geomagnetic pulsation anharmonicity can be entirely studied experimentally.  相似文献   

16.
Valuable information about the evolution of solar activity is recorded in early sunspot drawings, especially during 17th–19th centuries. In this context, we have developed a computer program to analyze historical drawings showing the trajectories of sunspots across the solar disk. As an example, we have analysed the drawings published in the book De heliometri structura et usu by Zucconi (1760). These drawings span the period from April 1754 to June 1760. We present the Butterfly diagram for those years. The ending of solar cycle 0 and the beginning of solar cycle 1 are clearly noted in this diagram.  相似文献   

17.
Using the annual number of geomagnetically quiet days (aa < 20 γ) for the year after the solar minimum, this precursor method predicts that the maximum sunspot number for cycle 23 will be 140 + 32, indicating that cycle 23 will be similar to cycles 21 and 22.  相似文献   

18.
19.
The latitudinal position of subauroral proton spots (special proton auroras observed from the IMAGE satellite) has been compared with the Pc1 pulsation intensity distribution determined using the data from the Finnish meridional network of induction magnetometers. It has been indicated that a Pc1 intensity maximum is always observed at the station that is closer to the proton aurora projection. Two Pc1 bands were registered in the event when two proton auroral spots were simultaneously observed at different latitudes. In this case, the Pc1 intensity distribution maximum at lower frequencies was related to a proton auroral spot at a higher latitude and vice versa. Such a spatial correlation between Pc1 pulsations and proton auroral spots, together with the previously established time correlation between these phenomena, demonstrates that subauroral proton spots reflect the region of ion cyclotron instability in the equatorial magnetosphere at the level of the ionosphere.  相似文献   

20.
Based on high-resolution (0.3 arcsec) observations, we studied the behavior of solar granulation in the neighborhood of a sunspot. The bright granules’ spatial distribution and the granules’ surface density as a function of distance from the center of the sunspot umbra were determined.Bright granules distribute delimiting cells of dimensions in the mesogranular scale. The mean diameter of these cells does not show significant variation with the variation of the magnetic field of the sunspot. The granules’ surface density does not show significant variation with distance to the sunspot umbra. Both results point to a very weak, if any, influence of the sunspot magnetic field at distances greater than 20 arcsec.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号