首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the annual frequency of occurrence of intense geomagnetic storms (Dst < –100 nT) throughout the solar activity cycle for the last three cycles and find that it shows different structures. In cycles 20 and 22 it peaks during the ascending phase, near sunspot maximum. During cycle 21, however, there is one peak in the ascending phase and a second, higher, peak in the descending phase separated by a minimum of storm occurrence during 1980, the sunspot maximum. We compare the solar cycle distribution of storms with the corresponding evolution of coronal mass ejections and flares. We find that, as the frequency of occurrence of coronal mass ejections seems to follow very closely the evolution of the sunspot number, it does not reproduce the storm profiles. The temporal distribution of flares varies from that of sunspots and is more in agreement with the distribution of intense geomagnetic storms, but flares show a maximum at every sunspot maximum and cannot then explain the small number of intense storms in 1980. In a previous study we demonstrated that, in most cases, the occurrence of intense geomagnetic storms is associated with a flaring event in an active region located near a coronal hole. In this work we study the spatial relationship between active regions and coronal holes for solar cycles 21 and 22 and find that it also shows different temporal evolution in each cycle in accordance with the occurrence of strong geomagnetic storms; although there were many active regions during 1980, most of the time they were far from coronal holes. We analyse in detail the situation for the intense geomagnetic storms in 1980 and show that, in every case, they were associated with a flare in one of the few active regions adjacent to a coronal hole.  相似文献   

2.
The descent and ejection of matter in the solar atmosphere observed in the CaII 8498-Å line have been studied. In the NOAA active region no. 10 792 on July 30, 2005 before the flare, the dense cold gas cloud descended with a ray velocity of ~8 km/s and then ascended in the impulsive phase. The plasma ascended with an acceleration reaching 0.4 km/s2 in the flare maximum. The acceleration of the matter likely continued after the flare maximum, because an acceleration of higher than 0.5 km/s2 was required for the appearance of the ejection at the edge of the occulting disk of the LASCO C2 coronagraph at 0557 UT. The descent of the matter resulting in the local heating of the chromosphere was also observed in the NOAA active region no. 10656 on August 9, 2004 before the flare. The maximum descent velocity was no more than 24.7 km/s.  相似文献   

3.
李祖忠  张旭东  江聪  杜涛  曾凌 《湖泊科学》2023,35(5):1822-1831
三峡水库蓄水引起库区水位抬升,水面面积显著增加,对区域水文循环过程产生了一定影响。为揭示三峡水库蓄水前后水面面积及蒸发损失变化规律,选取三峡库区坝前至寸滩区间作为研究区,利用Landsat影像数据提取1982—2021年水面面积,分区建立水位与面积关系曲线,进而推求库区逐日水面面积。在估计三峡库区水面面积的基础上,结合站点潜在蒸发资料推求水面蒸发损失量。研究结果表明:2010年三峡水库全面运行后,坝前至寸滩库区平均水面面积由蓄水前的372.96km2,增加到761.31km2,较蓄水前增加了1.04倍。同时,三峡水库的蓄泄调节改变了库区河段原有的水文节律,使得库区水面面积的季节性变化特征较蓄水前发生了显著变化。蓄水后,冬季水面面积最大,平均为843.81km2,较蓄水前增加了1.89倍;秋季、春季次之,水面面积分别为818.73和735.28km2,较蓄水前分别增加了97.17%和1.28倍;夏季水面面积最小,为653.03km2,较蓄水前仅增加了39.06%。水库全面运行后,...  相似文献   

4.
Field observations suggest that burrowing activity is the primary mode of sediment transport currently active in a small grassland drainage basin in Marin County, California. Spatial concentrations of the 1150 gopher mounds surveyed vary from 0-16 mounds m?2 on interfluves to 0.32 mounds m?2 on sideslopes and in the topographic hollow, with localized concentrations of up to 2.88 mounds m?2 on the margins of the colluvial deposit. Simple models of sediment transport by burrowing activity yield estimates of between 0.91 and 2.33 cm3 cm?1 yr?1 for the basin as a whole, with absolute minimum and maximum rates of 0.48 and 631 cm3 cm?1 yr?1. These values are similar to those previously estimated for this area (Lehre, 1982) and are nearly an order-of-magnitude less than average long-term sediment transport rates at the same site (Reneau, 1988).  相似文献   

5.
A Polish-made vertical ionosonde (VI) has been operated at the Kandilli Observatory in Istanbul, for almost one year (May 1993 - April 1994) as part of the COST 238, PRIME Project, The critical frequencies were obtained for every half-hour interval. The data obtained during this campaign, on the descending branch of solar cycle 22, and the data measured earlier in Istanbul for cycle 20 were analysed and the characteristic behaviour of the F2 region ionosphere over Istanbul has been determined. This is a unique data set for this area. Several markers of the solar cycle activities in terms of the daily relative sunspot numbers, F10.7 cm solar radio flux and solar flare index, and the magnetic daily index of Ap were then used to seek the possible influence of the solar and ionospheric activities on the critical frequencies observed in Istanbul. It was found that the solar flare index, as a solar activity index, was more reliable in determining quiet ionospheric days. It is shown that the minimum and maximum time values of the solar activity are more convenient for ionospheric prediction and modelling.  相似文献   

6.
Geomorphic evidence along bedrock-confined reaches of the Salt River in east-central Arizona provides a record of the river's largest flood events. Fine-grained flood slackwater deposits accumulated at channel margin irregularities several metres above the low-flow channel. Discharges associated with flow events responsible for the deposits were estimated by computer flow modelling. These estimates document flood magnitudes in excess of gauged historic streamflows. Relative and radiocarbon dating suggest that a flood record in excess of 600 y is preserved in the slackwater sequences. A prominent flood scar cut into grussy hillslope soils allows the extension of the prehistoric flood record to several thousand years. A maximum discharge estimate of 4600 m3s?1 affixed to the flood scar represents the largest flood event in the record, and is given a minimum recurrence interval of 1000–2000 y. The 1952 flood is the largest historic flow event experienced along the study reach and is estimated at 2900 m3s?1. Two palaeoflood events preserved in the slackwater stratigraphy exceed the 1952 event, and are given recurrence intervals of 300 and 600 y. The latter flood event had an estimated discharge of 3200 m3s?1. It is apparent that discharge estimates affixed to these infrequent, large-magnitude flood events approach a maximum with decreased probabilities (large recurrence intervals). This suggests that a physical limit on discharge may exist within the Salt River drainage basin and is perhaps directly related to drainage basin size.  相似文献   

7.
The observations of active region (AR) NOAA 10792 in the Ca II 8498 ? line with an ATB-1 solar telescope at the Sternberg State Astronomical Institute, Moscow State University (SSAI MSU) on July 30, 2005, are illustrated, and the events are analyzed using the data obtained on spacecraft. Three flares and accompanying coronal mass ejections (CMEs) are considered. It has been indicated that the beginning of the first compact CME lagged behind the flare onset by 3 min. Plasma ascended with acceleration that reached 0.4 km/s2 at the flare maximum. The matter was also apparently accelerated after the flare maximum, since an ejection could only appear at the edge of the occulting C 2 LASCO coronograph disk at 0557 UT when acceleration is about 0.5 km/s2. The second CME (of the halo type) leaded the beginning of the corresponding flare.  相似文献   

8.
A weak active region (NOAA 11158) appeared on the solar disk near the eastern limb. This region increased rapidly and, having reached the magnetic flux higher than 1022 Mx, produced an X-class flare. Only weak field variations at individual points were observed during the flare. An analysis of data with a resolution of 45 s did not indicate any characteristic features in the photospheric field dynamics during the flare. When the flux became higher than 3 × 1022 Mx, active region NOAA 10720 produced six X-class flares. The field remained quiet during these flares. An increase in the magnetic flux above ~1022 Mx is a necessary, but not sufficient, condition for the appearance of powerful flares. Simple active regions do not produce flares. A flare originates only when the field distribution in an active region is complex and lines of polarity inversion have a complex shape. Singular lines of the magnetic field can exist only above such active regions. The current sheets, in the magnetic field of which the solar flare energy is accumulated, originate in the vicinity of these lines.  相似文献   

9.

This paper presents the results of observation of a rare phenomenon—a narrowband increase in the brightness of cyclotron radiation of one of the structural details of a radio source located in the solar corona above the solar active region NOAA 12182 in October 2014 at a frequency of 4.2 ± 0.1 GHz. The brightness of radiation in the maximum of the phenomenon has reached 10 MK; its duration was equal to 3 s. The exact location of the source of the narrowband cyclotron radiation is indicated: it is a corona above a fragmented (4-nuclear) sunspot, on which a small UV flare loop was closed.

  相似文献   

10.
Temporal variations of the maximum (B max) and average (〈B〉) magnetic inductions, minimum (α min) and average (〈α〉) inclination angles of the field lines to the radial direction from the center of the Sun, and areas of the sunspot umbra S in the umbra of single sunspots during their passage across the solar disk are investigated. The variation of the properties of single sunspots has been considered at different stages of their existence, i.e., during formation, the “quiet” period, and the disappearance stage. It has been found that, for the majority of the selected single sunspots, there is a positive correlation between B max and S and between 〈B〉 and S defined at different times during the passage of sunspots across the solar disk. It is shown in this case that the nature of the dependence between the parameters α min and B max, α min and S, as well as between 〈α〉 and 〈B〉, 〈α〉 and S, can vary from sunspot to sunspot, but for many sunspots the inclination angle of the field lines decreases on average with the growth of the sunspot umbra area and the field strength.  相似文献   

11.
In this study, a new strain of microorganism Shewanella putrefaciens was used for biofiltration of a pyridine laden air stream in a corn‐cob packed biotrickling filter. In the biotrickling filter tested with S. putrefaciens, the maximum removal of pyridine is determined to be 100% at less than the average inlet concentration of 0.653 g m–3 and more than 93% at a higher average inlet concentration of 1.748 g m–3 (phase VIII) with an empty bed residence time (EBRT) of 106 s. However, when the biotrickling filter was operated at a low EBRT of 53 s and almost the same average inlet concentration of 1.752 g m–3 (phase VII), the removal level attained was not greater than 85%. The maximum elimination capacity (EC) of the biotrickling filter was 102.34 g m–3h–1 at an inlet pyridine load of 119.62 g m–3h–1 with an EBRT of 53 s in phase VII. The maximum deviation of the EC from the 100% conversion line varied from 0.257 to 10.166% when going from phase I to VIII. Kinetic analysis showed that the maximum removal rate, rmax, and saturation constant, Ks, values for pyridine were calculated as 0.24 g m–3h–1 and 6.44 g m–3, respectively, with a correlation coefficient, R2, of 0.9939 and a standard deviation of error of 23.94%. The information contained herein indicates that the corn‐cob packed biotrickling filter inoculated by S. putrefaciens should provide excellent performance in the removal of gaseous pyridine.  相似文献   

12.
The observed variations of the magnetic properties of sunspots during eruptive events (solar flares and coronal mass ejections (CMEs)) are discussed. Variations of the magnetic field characteristics in the umbra of the sunspots of active regions (ARs) recorded during eruptive events on August 2, 2011, March 9, 2012, April 11, 2013, January 7, 2014, and June 18, 2015, are studied. The behavior of the maximum of the total field strength Bmax, the minimum inclination angle of the field lines to the radial direction from the center of the Sun αmin (i.e., the inclination angle of the axis of the magnetic tube from the sunspot umbra), and values of these parameters Bmean and αmean mean within the umbra are analyzed. The main results of our investigation are discussed by the example of the event on August 2, 2011, but, in general, the observed features of the variation of magnetic field properties in AR sunspots are similar for all of the considered eruptive events. It is shown that, after the flare onset in six AR sunspots on August 2, 2011, the behavior of the specified magnetic field parameters changes in comparison with that observed before the flare onset.  相似文献   

13.
This study constructs a preliminary inventory of landslides triggered by the MS 6.8 Luding earthquake based on field investigation and human-computer interaction visual interpretation on optical satellite images. The results show that this earthquake triggered at least 5 007 landslides, with a total landslide area of 17.36 ?km2, of which the smallest landslide area is 65 ?m2 and the largest landslide area reaches 120 747 ?m2, with an average landslide area of about 3 500 ?m2. The obtained landslides are concentrated in the IX intensity zone and the northeast side of the seismogenic fault, and the area density and point density of landslides are 13.8%, and 35.73 ?km?2 peaks with 2 ?km as the search radius. It should be noted that the number of landslides obtained in this paper will be lower than the actual situation because some areas are covered by clouds and there are no available post-earthquake remote sensing images. Based on the available post-earthquake remote sensing images, the number of landslides triggered by this earthquake is roughly estimated to be up to 10 000. This study can be used to support further research on the distribution pattern and risk evaluation of the coseismic landslides in the region, and the prevention and control of landslide hazards in the seismic area.  相似文献   

14.
The results of a three-dimensional MHD simulation and data obtained using specialized spacecraft made it possible to construct an electrodynamic model of solar flares. A flare results from explosive magnetic reconnection in a current sheet above an active region, and electrons accelerated in field-aligned currents cause hard X rays on the solar surface. In this review, we considered works where the boundary and initial conditions on the photosphere were specified directly from the magnetic maps, obtained by SOHO MDI in the preflare state, in order to simulate the formation of a current sheet. A numerical solution of the complete set of MHD equations, performed using the new-generation PERESVET program, demonstrated the formation of several current sheets before a series of flares. A comparison of the observed relativistic proton spectra and the simulated proton acceleration along a magnetic field singular line made it possible to estimate the magnetic reconnection rate during a flare (∼107 cm s−1). Great flares (of the X class) originate after an increase in the active region magnetic flux up to 1022 Mx.  相似文献   

15.
Ambient concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) were measured at 51 sampling points by passive sampling technique in Kocaeli, an important industrial city in Turkey. Samples were analyzed by UV‐spectrophotometry for NO2 and O3 and by ion chromatography for SO2, respectively. Concentrations of SO2, NO2, and O3 were determined to investigate their spatial distribution and source characterization. The sampling campaigns revealed an average concentration of 8 µg/m3 (max. 82 µg/m3) for SO2, and 14 µg/m3 (max. 40 µg/m3) for NO2, in summer; while average winter concentrations were 25 µg/m3 (max. 61 µg/m3) for SO2, and 50 µg/m3 (max. 100 µg/m3) for NO2. The maximum ozone concentrations were determined to be 86 µg/m3 in summer and 61 µg/m3 in winter downwind of the source areas of the precursor pollutant emissions. The results showed that NO2 and SO2 concentrations in industrial and urban areas were two to four times higher compared with rural areas in the summer and winter. In the light of the information obtained from the spatial interpolation of the pollutant concentrations, a selection of appropriate locations for continuous monitoring was suggested according to the European Community (EU) directives.  相似文献   

16.
滆湖水体光学性质初步研究   总被引:2,自引:1,他引:2  
基于2009年7月至2010年6月滆湖全湖15个采样点的水体光学参数及相关水质理化因子数据,分析滆湖水体周年光合有效辐射(PAR)衰减特性,以期为滆湖沉水植物生态修复提供相关水体光学资料.结果表明,滆湖水体PAR衰减系数(Kd)周年变化范围为1.32~17.42 m-1.秋季Kd相对最小,平均值为2.35 m-1,变化范围为1.32 ~3.70 m-1;夏季Kd相对最大,平均值为6.23 m-1,变化范围为3.68~17.42 m-1.春、秋、冬季,滆湖水体真光层平均深度均满足沉水植物的生长需求,而在夏季滆湖水体真光层平均深度仅为0.84m,小于全湖平均水深(1.20 m),因此夏季PAR是限制沉水植物恢复的因子之一.滆湖水体Kd与透明度(SD)在秋、冬季的关系为:Kd =2.089 +0.705/SD.叶绿素a浓度和悬浮物浓度是影响滆湖水体Kd的重要因子之一.  相似文献   

17.
Based on the debris flow events that occurred in May 1998 in the area of Sarno, Southern Italy, this paper presents an approach to simulate debris flow maximum run‐out. On the basis of the flow source areas and an average thickness of 1·2 m of the scarps, we estimated debris flow volumes of the order of 104 and 105 m3. Flow mobility ratios (ΔH/L) derived from the x, y, z coordinates of the lower‐most limit of the source areas (i.e. apex of the alluvial fan) and the distal limit of the flows ranged between 0·27 and 0·09. We performed regression analyses that showed a good correlation between the estimated flow volumes and mobility ratios. This paper presents a methodology for predicting maximum run‐out of future debris flow events, based on the developed empirical relationship. We implemented the equation that resulted from the calibration as a set of GIS macros written in Visual Basic for Applications (VBA) and running within ArcGIS. We carried out sensitivity analyses and observed that hazard mapping with this methodology should attempt to delineate hazard zones with a minimum horizontal resolution of 0·4 km. The developed procedure enables the rapid delineation of debris flow maximum extent within reasonable levels of uncertainty, it incorporates sensitivities and it facilitates hazard assessments via graphic user interfaces and with modest computing resources. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
A typical agricultural water reservoir (AWR) of 2400 m2 area and 5 m depth, located in a semi‐arid area (southern Spain), was surveyed on a daily basis for 1 year. The annual evaporation flux was 102·7 W m?2, equivalent to an evaporated water depth of 1310 mm year?1. The heat storage rate G exhibited a clear annual cycle with a peak gain in April (G ~ 45 W m?2) and a peak loss in November (G ~ 40 W m?2), leading to a marked annual hysteretic trend when evaporation (λE) was related to net radiation (Rn). λE was strongly correlated with the available energy A, representing 91% of the annual AWR energy loss. The sensible heat flux H accounted for the remaining 9%, leading to an annual Bowen ratio in the order of 0·10. The equilibrium and advective evaporation terms of the Penman formula represented 76 and 24%, respectively, of the total evaporation, corresponding to a annual value of the Priestley–Taylor (P–T) coefficient (α) of 1·32. The P–T coefficient presented a clear seasonal pattern, with a minimum of 1·23 (July) and a maximum of 1·65 (December), indicating that, during periods of limited available energy, AWR evaporation increased above the potential evaporation as a result of the advection process. Overall, the results stressed that accurate prediction of monthly evaporation by means of the P–T formula requires accounting for both the annual cycle of storage and the advective component. Some alternative approaches to estimating Rn, G and α are proposed and discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The correlation between geomagnetic activity and the sunspot number in the 11-year solar cycle exhibits long-term variations due to the varying time lag between the sunspot-related and non-sunspot related geomagnetic activity, and the varying relative amplitude of the respective geomagnetic activity peaks. As the sunspot-related and non-sunspot related geomagnetic activity peaks are caused by different solar agents, related to the solar toroidal and poloidal fields, respectively, we use their variations to derive the parameters of the solar dynamo transforming the poloidal field into toroidal field and back. We find that in the last 12 cycles the solar surface meridional circulation varied between 5 and 20 m/s (averaged over latitude and over the sunspot cycle), the deep circulation varied between 2.5 and 5.5 m/s, and the diffusivity in the whole of the convection zone was ~108 m2/s. In the last 12 cycles solar dynamo has been operating in moderately diffusion dominated regime in the bulk of the convection zone. This means that a part of the poloidal field generated at the surface is advected by the meridional circulation all the way to the poles, down to the tachocline and equatorward to sunspot latitudes, while another part is diffused directly to the tachocline at midlatitudes, “short-circuiting” the meridional circulation. The sunspot maximum is the superposition of the two surges of toroidal field generated by these two parts of the poloidal field, which is the explanation of the double peaks and the Gnevyshev gap in sunspot maximum. Near the tachocline, dynamo has been operating in diffusion dominated regime in which diffusion is more important than advection, so with increasing speed of the deep circulation the time for diffusive decay of the poloidal field decreases, and more toroidal field is generated leading to a higher sunspot maximum. During the Maunder minimum the dynamo was operating in advection dominated regime near the tachocline, with the transition from diffusion dominated to advection dominated regime caused by a sharp drop in the surface meridional circulation which is in general the most important factor modulating the amplitude of the sunspot cycle.  相似文献   

20.
Abstract

Traditional and polar vertical electrical sounding (VES) techniques were used for computing and characterizing the transmissivity of the Quaternary and Palaeogene aquifers in the Khanasser Valley, northern Syria. The VES technique with its different applied approaches is inexpensive, easy and gives rapid results with high spatial resolution. The Dar-Zarrouk parameters were determined to estimate the groundwater potential of the aquifers. The results show the mean transmissivity of the Quaternary aquifer to be 49 m2/d (minimum: 10 m2/d; maximum: 131 m2/d; standard deviation: 32 m2/d), and that of the Palaeogene aquifer is 0.94 m2/d (minimum: 0.31 m2/d; maximum: 1.54 m2/d; standard deviation: 0.33 m2/d).

Editor D. Koutsoyiannis

Citation Asfahani, J., 2013. Groundwater potential estimation using vertical electrical sounding measurements in the semi-arid Khanasser Valley region, Syria. Hydrological Sciences Journal, 58 (2), 468--482.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号