首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In the present paper, we have obtained a class of charged super dense star models, starting with a static spherically symmetric metric in isotropic coordinates for perfect fluid by considering Hajj-Boutros (in J. Math. Phys. 27:1363, 1986) type metric potential and a specific choice of electrical intensity which involves a parameter K. The resulting solutions represent charged fluid spheres joining smoothly with the Reissner-Nordstrom metric at the pressure free interface. The solutions so obtained are utilized to construct the models for super-dense star like neutron stars (ρ b =2 and 2.7×1014 g/cm3) and Quark stars (ρ b =4.6888×1014 g/cm3). Our solution is well behaved for all values of n satisfying the inequalities \(4 < n \le4(4 + \sqrt{2} )\) and K satisfying the inequalities 0≤K≤0.24988, depending upon the value of n. Corresponding to n=4.001 and K=0.24988, we observe that the maximum mass of quark star M=2.335M and radius R=10.04 km. Further, this maximum mass limit of quark star is in the order of maximum mass of stable Strange Quark Star established by Dong et al. (in arXiv:1207.0429v3, 2013). The robustness of our results is that the models are alike with the recent discoveries.  相似文献   

2.
We use long-slit spectra taken with the William Herschel Telescope on La Palma and high-resolution Hubble Space Telescope imaging to study the gas kinematic in the halo of the ultraluminous infrared/radio galaxy PKS1345+12 (z=0.122). Our long-slit spectra show line splitting at the locations of massive star clusters ( $10^{6}<M_{\mathrm{SSC}}^{\mathrm{YSP}}<10^{7}$ M), indicating that they are moving at up to 450 km?s?1 with respect to the local ambient gas. Given their kinematics, it is plausible that these super star clusters have been formed either in fast-moving gas streams or tidal tails that are falling back into the nuclear regions as part of the merger process, or as a consequence of jet-induced star formation linked to the extended, diffuse radio emission detected in the halo of the galaxy.  相似文献   

3.
We present a charged analogue of Pant et al. (2010, Astrophys. Space Sci., 330, 353) solution of the general relativistic field equations in isotropic coordinates by using simple form of electric intensity E that involve charge parameter K. Our solution is well behaved in all respects for all values of X lying in the range 0 <X≤ 0.11, K lying in the range 4 <K≤ 6.2 and Schwarzschild compactness parameter u lying in the range 0 <u≤ 0.247. Since our solution is well behaved for wide ranges of the parameters, we can model many different types of ultra-cold compact stars like quark stars and neutron stars. We have shown that corresponding to X = 0.077 and K = 6.13 for which u = 0.2051 and by assuming surface density ρ b =4.6888×1014 g cm ?3 the mass and radius are found to be 1.509M , 10.906 km respectively which match with the observed values of mass 1.51M and radius 10.90 km of the quark star XTE J1739-217. The well behaved class of relativistic stellar models obtained in this work might have astrophysical significance in the study of more realistic internal structures of compact stars.  相似文献   

4.
We investigated the properties of galaxy clusters in the region of the Hercules supercluster using observational data from the SDSS and 2MASS catalogs and the NED. We have selected 13 galaxy clusters with a total dynamical mass of 4.82 × 1015 M in a 100 × 45 Mpc supercluster region in the plane of the sky (0.030 < z < 0.041). In addition, our sample includes eight clusters from the immediate neighborhoods of the superclusters and ten field clusters at the same z. The derived properties of the rich Hercules supercluster are shown in comparison with the data for the poor Leo supercluster. The main parameters of the virialized galaxy cluster regions in the near infrared (K s ) for the Hercules supercluster differ from those for the Leo supercluster: the number of galaxies and the total luminosity (to a limiting magnitude of ?21 · m 5) increase with cluster mass (L K,200M 200 0.91±0.07 and N 200M 200 0.94±0.07 ), but the dependences are steeper by 0.28 and 0.22. In the virialized cluster regions, the fraction of early-type galaxies selected by the bulge contribution, concentration index, and u t= r color is, on average, 66% (60% in Leo, 70% in the field) among the galaxies brighter than ?23 · m 3 and 54% (51% in Leo, 61% in the field) among the galaxies brighter than ?22 · m 3. The fraction of early-type galaxies in the superclusters does not change with galaxy cluster mass and luminosity. The composite luminosity function of the rich Hercules supercluster is described by a Schechter function and does not differ from the luminosity function of the poor Leo supercluster for the luminosity interval [?26 m , ?21 · m 5] but differs from the field luminosity function at the same z determined from ten galaxy clusters.  相似文献   

5.
  1. The exotic system H 3 ++ (which does not exist without magnetic field) exists in strong magnetic fields:
    1. In triangular configuration for B≈108–1011?G (under specific external conditions)
    2. In linear configuration for B>1010?G
  2. In the linear configuration the positive z-parity states 1σ g , 1π u , 1δ g are bound states
  3. In the linear configuration the negative z-parity states 1σ u , 1π g , 1δ u are repulsive states
  4. The H 3 ++ molecular ion is the most bound one-electron system made from protons at B>3×1013?G
Possible application: The H 3 ++ molecular ion may appear as a component of a neutron star atmosphere under a strong surface magnetic field B=1012–1013?G.  相似文献   

6.
We present photoelectric and spectroscopic observations of the protoplanetary object V 1853 Cyg, a B supergiant with an IR excess. Over two years of its observations, the star exhibited rapid irregular light variations with amplitudes $\Delta V = 0\mathop .\limits^m 3$ , $\Delta B = 0\mathop .\limits^m 3$ , $\Delta U = 0\mathop .\limits^m 4$ and no correlation between color and magnitude. Its mean magnitude has not changed since the first UBV observations in 1973 (Drilling 1975). Low-resolution spectroscopic observations show that the spectrum of V 1853 Cyg in 2000 corresponded to that of a B1–B2 star with T eff ~ 20000 K. High-resolution spectroscopic observations confirm the conclusion that the profiles of absorption and emission lines are variable. We identified the star’s spectral lines and measured the equivalent widths of more than 40 lines. The star’s radial velocity is 〈V r 〉= ?49 × 5 km s?1, as measured from absorption lines, and ranges from–50 to–85 km s–1 for different lines, as measured from shell emission lines. The velocity of the dust clouds on the line of sight determined from diffuse interstellar bands (DIBs) and from interstellar Na I lines is 〈V r 〉= ?16 × 5 km s?1. The P Cyg profiles of the He I λ5876 Å and λ6678 Å lines suggest an ongoing mass loss by the star. An analysis of the observational data confirms the conclusion that the star belongs to the class of intermediatemass protoplanetary objects.  相似文献   

7.
We present a well behaved class of charged analogue of M.C. Durgapal (J. Phys. A, Math. Gen. 15:2637, 1982) solution. This solution describes charged fluid balls with positively finite central pressure, positively finite central density; their ratio is less than one and causality condition is obeyed at the centre. The outmarch of pressure, density, pressure-density ratio and the adiabatic speed of sound is monotonically decreasing, however, the electric intensity is monotonically increasing in nature. This solution gives us wide range of parameter for every positive value of n for which the solution is well behaved hence, suitable for modeling of super dense stars. Keeping in view of well behaved nature of this solution, one new class of solution is being studied extensively. Moreover, this class of solution gives us wide range of constant K (0≤K≤2.2) for which the solution is well behaved hence, suitable for modeling of super dense stars like strange quark stars, neutron stars and pulsars. For this class of solution the mass of a star is maximized with all degree of suitability, compatible with quark stars, neutron stars and pulsars. By assuming the surface density ρ b =2×1014 g/cm3 (like, Brecher and Capocaso, Nature 259:377, 1976), corresponding to K=0 with X=0..235, the resulting well behaved model has the mass M=4.03M Θ , radius r b =19.53 km and moment of inertia I=1.213×1046 g?cm2; for K=1.5 with X=0.235, the resulting well behaved model has the mass M=4.43M Θ , radius r b =18.04 km and moment of inertia I=1.136×1046 g?cm2; for K=2.2 with X=0.235, the resulting well behaved model has the mass M=4.56M Θ , radius r b =17.30 km and moment of inertia I=1.076×1046 g?cm2. These values of masses and moment of inertia are found to be consistent with the crab pulsars.  相似文献   

8.
We analyzed the luminosity-temperature-mass of gas (L X ?T?M g ) relations for a sample of 21 Chandra galaxy clusters. We used the standard approach (β?model) to evaluate these relations for our sample that differs from other catalogues since it considers galaxy clusters at higher redshifts (0.4<z<1.4). We assumed power-law relations in the form $L_{X} \sim(1 +z)^{A_{L_{X}T}} T^{\beta_{L_{X}T}}$ , $M_{g} \sim(1 + z)^{A_{M_{g}T}} T^{\beta_{M_{g}T}}$ , and $M_{g} \sim(1 + z)^{A_{M_{g}L_{X}}} L^{\beta_{M_{g}L_{X}}}$ . We obtained the following fitting parameters with 68 % confidence level: $A_{L_{X}T} = 1.50 \pm0.23$ , $\beta_{L_{X}T} = 2.55 \pm0.07$ ; $A_{M_{g}T} = -0.58 \pm0.13$ and $\beta_{M_{g}T} = 1.77 \pm0.16$ ; $A_{M_{g}L_{X}} \approx-1.86 \pm0.34$ and $\beta_{M_{g}L_{X}} = 0.73 \pm0.15$ , respectively. We found that the evolution of the M g ?T relation is small, while the M g ?L X relation is strong for the cosmological parameters Ω m =0.27 and Ω Λ =0.73. In overall, the clusters at high-z have stronger dependencies between L X ?T?M g correlations, than those for clusters at low-z. For most of galaxy clusters (first of all, from MACS and RCS surveys) these results are obtained for the first time.  相似文献   

9.
Based on the Ogorodnikov-Milne model, we analyze the proper motions of 95 633 red giant clump (RGC) stars from the Tycho-2 Catalogue. The following Oort constants have been found: A = 15.9 ± 0.2 km s?1 kpc?1 and B = ?12.0±0.2 km s?1 kpc?1. Using 3632 RGC stars with known proper motions, radial velocities, and photometric distances, we show that, apart from the star centroid velocity components relative to the Sun, only the model parameters that describe the stellar motions in the XY plane differ significantly from zero. We have studied the contraction (a negative K effect) of the system of RGC stars as a function of their heliocentric distance and elevation above the Galactic plane. For a sample of distant (500–1000 pc) RGC stars located near the Galactic plane (|z| < 200 pc) with an average distance of d = 0.7 kpc, the contraction velocity is shown to be Kd = ?3.5 ±0.9 km s?1; a noticeable vertex deviation, l xy = 9 · o 1 ± 0 · o 5, is also observed for them. For stars located well above the Galactic plane (|z| ≥200 pc), these effects are less pronounced, Kd = ?1.7 ± 0.5 km s?1 and l xy = 4 · o 9 ± 0 · o 6. Using RGC stars, we have found a rotation around the Galactic X axis directed toward the Galactic center with an angular velocity of ?2.5 ± 0.3 km s?1 kpc?1, which we associate with the warp of the Galactic stellar-gaseous disk.  相似文献   

10.
We analyze ultraviolet spectra of DF Tau, a binary system whose primary component is a classical T Tauri star. The spectra were obtained from the Hubble Space Telescope and the IUE satellite. The stellar emission in the wavelength range covered is shown to originate in an accretion shock wave. The gas infall velocity is ~250 km s?1. The accreted-gas density is typically N 0≤1011 cm?3, but it can occasionally be higher by one and a half orders of magnitude. The continuum intensity near λ=1900 Å was found to be virtually constant for such a significant change in N 0. The star’s photometric variability is probably attributable to variations in accreted-gas density and velocity, as well as to variations in the area of a hot spot on the stellar surface and in its orientation relative to the observer. The mean accretion rate is $\dot M \sim 3 \times 10^{ - 9} M_ \odot yr^{ - 1}$ . The interstellar extinction for DF Tau is $A_V \simeq 0\mathop .\limits^m 5$ , the stellar radius is ≤2R , and the luminosity of the primary component is most likely no higher than 0.3 L . We argue that the distance to DF Tau is about 70 pc. Upper limits are placed on the primary’s coronal emission measure: EM(T=107 K)<3×1054 cm?3 and EM(T=1.3×106 K)<3×1055 cm?3. Absorption lines originating in the stellar wind were detected in the star’s spectrum. Molecular hydrogen lines have essentially the same radial velocity as the star, but their full width at half maximum is FWHM ?50 km s?1. We failed to explain why the intensity ratio of the C IV λ1550 doublet components exceeds 2.  相似文献   

11.
We combined the (K s , J?K s ) data in Laney et al. (Mon. Not. R. Astron. Soc. 419:1637, 2012) with the V apparent magnitudes and trigonometric parallaxes taken from the Hipparcos catalogue and used them to fit the $M_{K_{s}}$ absolute magnitude to a linear polynomial in terms of V?K s colour. The mean and standard deviation of the absolute magnitude residuals, ?0.001 and 0.195 mag, respectively, estimated for 224 red clump stars in Laney et al. (2012) are (absolutely) smaller than the corresponding ones estimated by the procedure which adopts a mean $M_{K_{s}}=-1.613~\mbox{mag}$ absolute magnitude for all red clump stars, ?0.053 and 0.218 mag, respectively. The statistics estimated by applying the linear equation to the data of 282 red clump stars in Alves (Astrophys. J. 539:732, 2000) are larger, $\Delta M_{K_{s}}=0.209$ and σ=0.524 mag, which can be explained by a different absolute magnitude trend, i.e. condensation along a horizontal distribution.  相似文献   

12.
We have investigated the resonances due to the perturbations of a geo-centric synchronous satellite under the gravitational forces of the Sun, the Moon and the Earth including it’s equatorial ellipticity. The resonances at the points resulting from (i) the commensurability between \(\dot{\theta}_{0}\) (steady-state orbital angular rate of the satellite) and \(\dot{\theta}_{m}\) (angular velocity of the moon around the earth) and (ii) the commensurability between \(\dot{\theta}_{0}\) and \(\dot{\psi}_{0}\) (steady-state regression rate of the synchronous satellite) are analyzed. The amplitude and the time period of the oscillation have been determined by using the procedure as given in Brown and Shook (Planetary Theory, Cambridge University Press, Cambridge, 1933). We have observed that as θ m (0°θ m ≤45°) and ψ (0°ψ≤135°) increase, the amplitude decreases and the time period also decreases. We have also shown the effect of ψ on amplitude and time period for 0°Γ≤45°, where Γ is the angle measured from the minor axis of the earth’s equatorial ellipse to the projection of the satellite on the plane of the equator.  相似文献   

13.
This paper presents a new family of interior solutions of Einstein–Maxwell field equations in general relativity for a static spherically symmetric distribution of a charged perfect fluid with a particular form of charge distribution. This solution gives us wide range of parameter, K, for which the solution is well behaved hence, suitable for modeling of superdense star. For this solution the gravitational mass of a star is maximized with all degree of suitability by assuming the surface density equal to normal nuclear density, ρ nm=2.5×1017 kg?m?3. By this model we obtain the mass of the Crab pulsar, M Crab, 1.36M and radius 13.21 km, constraining the moment of inertia >?1.61×1038 kg?m2 for the conservative estimate of Crab nebula mass 2M . And M Crab=1.96M with radius R Crab=14.38 km constraining the moment of inertia >?3.04×1038 kg?m2 for the newest estimate of Crab nebula mass, 4.6M . These results are quite well in agreement with the possible values of mass and radius of Crab pulsar. Besides this, our model yields moments of inertia for PSR J0737-3039A and PSR J0737-3039B, I A =1.4285×1038 kg?m2 and I B =1.3647×1038 kg?m2 respectively. It has been observed that under well behaved conditions this class of solutions gives us the overall maximum gravitational mass of super dense object, M G(max)=4.7487M with radius $R_{M_{\max}}=15.24~\mathrm{km}$ , surface redshift 0.9878, charge 7.47×1020 C, and central density 4.31ρ nm.  相似文献   

14.
The present paper reports a class of new solutions of charged fluid spheres expressed by a space time with its hypersurfaces t=const. as spheroid for the case 0<K<1 with surface density 2×1014 gm/cm3. When the Buchdahl’s type fluid spheres are electrified with generalized charged intensity and it is utilized to construct a super-dense star and found that star satisfies all reality conditions except the casual condition for 0<K≤0.05. The maximum mass occupied and the corresponding radius have been obtained 8.130871 M Θ and 24.60916 km respectively. Further, the redshift at the centre and on the surface are noted by z 0=0.933729 and z a =0.383808 respectively.  相似文献   

15.
We present our photometric observations of an early B supergiant with an infrared excess, the protoplanetary object LSIV-12°111, and the previously suspected variable star NSV 24971. We confirm its photometric variability. During two observing seasons (2000–2001), the star exhibited rapid irregular light variations with amplitudes $\Delta V \sim 0\mathop .\limits^m 3$ , $\Delta B \sim 0\mathop .\limits^m 3$ , and $\Delta U \sim 0\mathop .\limits^m 4$ and a time scale of ~1d. There is no correlation between the colors and magnitudes of the star. The variability patterns of LSIV-12°111 and two other hot post-AGB stars, V886 Her and V1853 Cyg, are shown to be similar.  相似文献   

16.
We analyzed the X-ray data obtained by the Chandra telescope for the galaxy cluster CL0024+17 (z = 0.39). The mean temperature of the cluster is estimated (kT = 4.35 ?0.44 +0.51 keV) and the surface brightness profile is derived. We generated the mass and density profiles for dark matter and gas using numerical simulations and the Navarro-Frenk-White dark matter density profile (Navarro et al., 1995) for a spherically symmetric cluster in which gas is in hydrostatic equilibrium with the cluster field. The total mass of the cluster is estimated to be M 200 = 3.51 ?0.47 +0.38 × 10 Sun 14 within a radius of R 200 = 1.24 ?0.17 +0.12 Mpc of the cluster center. The contribution of dark matter to the total mass of the cluster is estimated as ${{M_{200_{DM} } } \mathord{\left/ {\vphantom {{M_{200_{DM} } } {M_{tot} }}} \right. \kern-0em} {M_{tot} }} = 0.89$ .  相似文献   

17.
New photoelectric UBVRI observations of the eclipsing variable V 1016 Ori have been obtained with the AZT-11 telescope at Crimean Astrophysical Observatory and with the Zeiss-600 telescope at Mount Maidanak Observatory. Light curves are constructed from the new observations and from published and archival data. We use a total of 340, 348, 386, 185, and 62 magnitude estimates in the bands from U to I, respectively. An analysis of these data has yielded the following results. The photometric elements were refined; their new values are $Min I = JDH 2441966.820 + 65\mathop .\limits^d 4331E$ . The UBVRI magnitudes outside eclipse were found to be $5\mathop .\limits^m 95$ , $6\mathop .\limits^m 77$ , $6\mathop .\limits^m 75$ , $6\mathop .\limits^m 68$ , and $6\mathop .\limits^m 16$ , respectively. No phase effect was detected. We obtained two light-curve solutions: (1) assuming that the giant star was in front of the small one during eclipse, we determined the stellar radii, r s=0.0141 and r g=0.0228 (in fractions of the semimajor axis of the orbit); and (2) assuming that the small star was in front of the giant one, we derived r g=0.0186 and r s=0.0180 for the V band. The brightness of the primary star in the bands from U to I is L 1=0.96, 0.92, 0.90, 0.89, and 0.88, the orbital inclination is $i = 87^\circ .1$ , and the maximum eclipse phase is α0= 0.66. In both cases, we accepted the U hypothesis, assumed the orbit to be elliptical, and took into account the flux from the star Θ1 Ori E that fell within the photometer aperture. The first solution leads to a discrepancy between the primary radius determined by solving the light curve and the radial-velocity curve and its value estimated from the luminosity and temperature. This discrepancy is eliminated in the second solution, and it turns out that, by all parameters, the primary corresponds to a normal zero-age main-sequence star.  相似文献   

18.
Considering the host galaxy contribution, a spectral decomposition method is used to reanalyzed the archive data of optical spectra for a narrow line Seyfert 1 galaxy, NGC 4051. The light curves of the continuum f λ (5100 Å), and Hβ, He ii, Fe ii emission lines are given. We find strong flux correlations between line emissions of Hβ, He ii, Fe ii and the continuum f λ (5100 Å). These low-ionization lines (Hβ, Fe ii, He ii) have “inverse” intrinsic Baldwin effects. Using the methods of the cross-correlation function and the Monte Carlo simulation, we find the time delays, with respect to the continuum, are $3.45^{+12.0}_{-0.5}~\mbox{days}$ with the probability of 34 % for the intermediate component of Hβ, $6.45^{+13.0}_{-1.0}~\mbox{days}$ with the probability of 65 % for the intermediate component of He ii. From these intermediate components of Hβ and He ii, the calculated central black hole masses are $0.86^{+4.35}_{-0.33}\times 10^{6}$ and $0.82^{+3.12}_{-0.45}\times 10^{6}~M_{\odot }$ . We also find that the time delays for Fe ii are $9.7^{+3.0}_{-5.0}~\mbox{days}$ with the probability of 36 %, $8.45^{+1.0}_{-2.0}~\mbox{days}$ with the probability of 18 % for the total epochs and “subset 1” data, respectively. It seems that the Fe ii emission region is outside of the Hβ emission region.  相似文献   

19.
A series of new radio-continuum (λ=20, 13, 6 and 3 cm) mosaic images focused on the NGC 55 galactic system were produced using archived observational data from the Australia Telescope Compact Array. These new images are both very sensitive (down to rms=33 μJy) and feature high angular resolution (down to <4″). Using these newly created images, 66 previously unidentified discrete sources are identified. Of these sources, 46 were classified as background sources, 11 as H?ii regions and 6 as supernova remnant candidates. This relatively low number of SNR candidates detected coupled with the low number of large H?ii regions is consistent with the estimated low star formation rate of the galaxy at 0.06 M ?year?1. Our spectral index map shows that the core of galaxy appears to have a shallow spectral index between α=?0.2 and ?0.4. This indicates that the core of the galaxy is a region of high thermal radiation output.  相似文献   

20.
Published photoelectric measurements over a wide wavelength range (0.36–18 µm) are used to study the continuum spectrum of the star Θ1 Ori C. The model that assumes the following three radiation sources is consistent with observations: (1) a zero-age main-sequence O7 star (object 1) of mass M 1=20M , radius R 1=7.4R , effective temperature T 2=37 000 K, and absolute bolometric magnitude $M\mathop {bol}\limits^1 = - 7\mathop .\limits^m 7$ ; (2) object 2 with M 2=15M , R 2=16.2R , T 2=4000 K, and $M\mathop {bol}\limits^2 = - 5\mathop .\limits^m 1$ ; and (3) object 3 with R 310 700 R , T 3=190 K, and $M\mathop {bol}\limits^3 = - 0\mathop .\limits^m 6$ . The visual absorption toward the system is $A_V = 0\mathop .\limits^m 95$ and obeys a normal law. The nature of objects 2 and 3 has not been elucidated. It can only be assumed that object 2 is a companion of the primary star, its spectral type is K7, and it is in the stage of gravitational contraction. Object 3 can be a cocoon star and a member of the system, but can also be a dust envelope surrounding the system as a whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号