首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
湖泊是陆地水资源的重要组成部分,也是局地气候和全球环境变化的敏感指示器之一。湖泊面积增加和水位的变化直接反映了流域内水量平衡变化过程,对区域和全球的气候变化的反映较为敏感。利用线性趋势法对青海湖流域长时间序列气象、水文资料以及流域水热条件和植被生长状况进行分析研究,利用皮尔逊相关系数法计算了各因素与湖水位的相关关系,旨在定量评估区域气象、水文、植被等要素的变化对和湖泊水位变化过程的贡献,开展细致的青海湖水位变化特征的影响因子探讨与分析。结果表明:该流域气候呈现显著的暖湿化趋势,其中流域年降水量总体上呈现弱的增加态势,气候倾向率为10.8 mm·(10 a)-1;流域年平均气温呈显著的升高趋势(P <0.01)。流域年可能蒸散率和年实际蒸散波动较大,年实际蒸散虽有波动但增加趋势非常明显(P <0.01)。流域净第一性生产力(P)平均值为2.86 t DM·hm-2·a-1,呈现显著的增加趋势(P <0.01)。从1961年开始湖水位呈现逐年波动下降的趋势,到2004年水位最低(P<0.01);2004—2015年的近10 a连续上升,上升速率达14.4 m·(10 a)-1P <0.01)。流域气温升高、降水量增加,流域气候呈显著的暖湿化特征,入湖河流径流量也呈现出弱的增加态势;气候暖湿化特征导致流域生物温度增加,植被生长状况得到改善,[WTBX]NPP[WTBZ]显著增加。年降水量增多,河流径流量增大,湖水位抬升;前一年的降水量、≥0 ℃积温、温度、径流量、NPP和蒸发量对湖水位的影响更大;NDVINPP的增加反映流域植被生长状况得到好转,从而增加了流域植被水土保持和水源涵养能力,对湖水位产生间接的影响。降水量、≥0 ℃积温、温度、径流量和NPP对青海湖水位起到正反馈效应,而蒸发量对湖水位主要起负反馈效应,年降水量和年径流量是湖水位变化的最直接的影响因子。  相似文献   

2.
基于主成分分析法的博斯腾湖水位变化驱动力研究*   总被引:1,自引:0,他引:1  
利用1958~2010年博斯腾湖流域水文、气象与社会经济资料,采用相关分析法与主成分分析法,分析了博斯腾湖水位动态变化情况及其驱动机理。结果表明,1)博斯腾湖水位从1958年的1 048.0 m下降至2010年的1 045.75 m,净下降2.25 m。水位变化经历了波动式下降(1958~1987年)→急剧上升(1988~2002年)→急剧下降(2003~2010年)的变化过程;2)博斯腾湖水位变化主要是由入湖流量、降水与气温波动等自然因素和耕地面积与人口的增加等人为因素共同作用的结果,特别是入湖流量变化是湖面水位升降的主要影响因子。研究结果能为干早区湖泊水资源的合理利用和生态环境的保护提供科学依据。  相似文献   

3.
1958—2012年博斯腾湖水位变化驱动力   总被引:3,自引:0,他引:3  
利用1958—2012年博斯腾湖流域水文、气象与社会经济资料序列,采用灰色关联法分析了博斯腾湖水位变化特征及其影响因素。结果表明:(1)在过去半个多世纪,博斯腾湖水位经历了下降、上升、再下降3个阶段,各阶段内各驱动因素的权重不同;(2)博斯腾湖水位变化主要是入湖流量、降水及气温波动等自然因素和耕地面积、灌溉面积、灌溉引水量及灌溉净耗水量等人为因素共同作用的结果,特别是入湖流量变化是博斯腾湖水位升降的主要影响因素。1958—1987年,开都河处于偏枯年份,博斯腾湖水位呈缓慢下降的趋势,水位从1958年的1 048.00m下降至1987年的1 045.03m,平均水位为1 047.20m,这期间自然因素对水位的影响较大;1988—2002年,开都河处于丰水年,入湖水量较多,博斯腾湖水位呈快速上升趋势,水位从1988年的1 045.21m上升至2002年的1 048.60m,平均水位为1 046.80m,这期间人类活动对水位的影响开始增强,但自然因素对水位的影响仍强于人类活动对水位的影响;2003—2012年,入湖水量减少,博斯腾湖水位又呈急剧下降趋势,水位从2003年的1 048.55m下降至2012年的1 045.68m,这期间人类活动对水位的影响呈显著增加趋势;(3)1958—2012年博斯腾湖水位变化的主要驱动因素总体呈自然因素向人类活动的变化趋势。  相似文献   

4.
水文过程在湖泊和湿地形成、发育、演替甚至消亡过程中起重要作用,探讨天目湖水文特征变化及其对上游湿地和湖泊生态环境的影响有利于天目湖的保护和利用。利用1960~2001年实测的水文和气象资料,研究了天目湖的水文特征及其变化。42 a来,天目湖区的降水量略有增加,蒸发量逐渐减少,入湖水量不断增多,水位明显上升。采用吴淞高程对典型枯水年、平水年和丰水年天目湖湿地出露情况进行了分析,结果表明,枯水年17 m高程以下,平水年19 m以下,丰水年21 m以下为湿地,湿地面积在不同水分状况年份差别较大。水位上升引起的湿地面积增加丰富了湿地生态系统生物多样性。天目湖水文特征变化对湖泊水质有一定影响,一方面,由于径流量增加,入湖水携带了更多外界的污染物使湖泊污染加剧;另一方面,入湖水量增加和水位上升又会稀释湖中的污染物浓度。近年来天目湖水质总体上呈下降趋势。根据天目湖水文特征的变化和湖泊生态环境状况,提出了建立湿地公园、退渔还湖,调整湖泊水位等湿地管理和湖泊水质改善对策。  相似文献   

5.
近50 a博斯腾湖逐年水量收支估算与水平衡分析   总被引:2,自引:0,他引:2       下载免费PDF全文
据博斯腾湖流域1958-2010年期间主要河流开都河、黄水沟、清水河、孔雀河的逐年流量资料,结合焉耆盆地降水、蒸发要素的同期观测资料,对大湖区的逐年水量收支进行计算,并依据水量平衡原理对博湖大湖区残差水量进行了逐年分析。结果表明:(1)1958-2010年期间年均入湖水量14.34×108 m3/a,其中入湖河水约占95%;年均输出水量13.96×108 m3/a,其中大湖区输入孔雀河水量约占43%,湖面蒸发耗水量占57%;湖区年均蓄水量71.57±3.92×108 m3108 m3/a,湖水年均水位为1 047.01±0.94 m;(2)极端水文年度水量平衡分析指出:1986年为最枯年份,入湖河水是多年平均值的62%,而出湖河水量是多年平均值的153%,导致年内湖区水位下降0.94 m;2002年最丰年份入湖河水是多年平均值的2.6倍,致使年内水位上升0.80 m;(3)残差水量逐年“正负”变化指出,湖水与地下水之间存在互补关系,过去53 a间湖水补给地下水的年均水量为0.87×108 m3/a。  相似文献   

6.
黄河上游气候变化对地表水的影响   总被引:29,自引:2,他引:27  
利用1961~2002年黄河上游唐乃亥水文站水文资料及同期该流域气象资料,研究黄河上游流域气候变化及其对地表水资源的影响,结果表明: 黄河上游年流量呈现出逐年减少趋势,20世纪90年代以来减少趋势更为明显;黄河上游流域气候变化表现出气温升高、降水减少和蒸发增大的干旱化趋势,这一变化趋势在90年代以来尤为突出;气温升高、降水量减少和蒸发量增大是导致黄河上游流量减少的气候原因,其中降水量是影响流量的主要气候因子,降水量的减少特别是夏季降水量的减少直接导致了黄河上游流量的减少。  相似文献   

7.
黄河上游径流变化特征及其影响因素初步分析   总被引:16,自引:0,他引:16  
利用1956—2005年黄河上游水文和气象台站观测的流量、气温、降水资料,用气候诊断方法分析了该地区径流量的年代际演变特征以及影响因子。结果表明:20世纪50—80年代年平均流量呈波动性的上升趋势,90年代至21世纪的前5年年平均流量呈下降趋势。降水量、蒸发量、气温是影响流域流量的主要气象因子,它们的机理完全不同。枯季、雨季降水量与流量分别呈负、正反馈机制,秋季和冬季降水量对次年春夏季的流量有比较明显的调节作用;4—5月(10月)气温与后期5—6月(11月)流量呈负(正)反馈机制;枯季、雨季地表蒸发与流域的河川流量呈负反馈机制,并且消耗的水资源量呈逐年增加的趋势。20世纪90年代以来黄河上游地区河川流量的减少与降水量减少、地表蒸发量增大有关。  相似文献   

8.
青海湖末次冰消期以来的湖面变化   总被引:2,自引:0,他引:2       下载免费PDF全文
青海湖是我国最大的内陆封闭湖泊,处在东亚季风、印度季风和西风带的交汇处,对环境变化敏感,是研究该区域及青藏高原环境变化的理想地点。前人基于其连续的湖相沉积物的多项环境指标与其四周湖成阶地、古岸堤以及表层所覆盖的风成沉积物的年代学研究,探讨了青海湖晚第四纪以来的湖面变化情况,取得了显著成果。然而由于测年材料和测年方法的不同,对于高湖面出现的年代问题依然存在着诸多争议。根据近年来已发表的测年数据、前人对青海湖湖面升降变化的研究结果和青海湖QH-2000孔介形类壳体δ18O的记录进行综合集成,构建了自14 ka以来的青海湖湖面变化曲线。在约14~12 ka,湖面在海拔约3 206 m,比现代湖面高12.3 m(以2010年3月湖面海拔3 193.4 m为基准);在约12~10 ka,湖面急剧下降到海拔约3 165 m,比现代低28.4 m;在10~9ka,湖面急剧上升到海拔约3 173 m;在9~6 ka,湖面相对稳定在海拔3 213 m;在6~4 ka,发生过一次干旱事件,湖面下降到低于现代湖面;在4~1 ka,湖面相对稳定在海拔3 193.7 m;在1 ka至今,湖面呈持续下降趋势。  相似文献   

9.
1974—2009年西藏羊卓雍错湖泊水位变化分析   总被引:3,自引:0,他引:3  
羊卓雍错(简称羊湖)是青藏高原南部最大的一个封闭型内陆湖泊,位于西藏自治区浪卡子县境内,与纳木错、玛旁雍错一起并列为西藏三大圣湖,是藏南地区重要的风景旅游区。始建于1989年的羊湖发电站于1997年正式投入运营,为世界上海拔最高的抽水蓄能电站。在全球气候变暖和人类活动的影响下,其湖面水位变化及其成因备受国内外关注。利用1974—2009年羊湖白地水文观测资料,分析了36年来羊湖水位年际、年内变化特征及其与自然要素(气温、降水和蒸发等)和人类活动之间的关系。结果表明,羊湖平均水位为19.06 m,历史最高值出现在1980年,为21.37 m,2009年水位降至17.08 m的历史最低值。自1974年有水位观测资料以来,羊湖水位呈波动式下降趋势,其中,1974—1977年水位表现为逐年下降,幅度为0.26 m/a;之后至1980年以0.4 m/a呈上升态势,1980年羊湖水位达到了历史最高值;此后,至1996年水位呈显著下降趋势,减少速率为2.08 m/(10 a),1996年是羊湖水位上升的一个转折点,至2004年水位在逐年上升;2004—2009年是一个水位显著下降的时段,速率为0.57 m/a,也是水位下降趋势最为显著的时段。羊湖水位下降年份占整个时段的56%,而44%的年份水位在上升。1974—1984年及2001—2005年水位高于多年平均值,而1985—2000年及2006年之后水位都低于多年平均值。羊湖水位的年内最低值一般出现在6月,最高值则在10月。羊湖年内水位变化对流域降水量的响应具有一定的滞后性,时间为2个月左右。羊湖水位变化主要是由降水波动、气温上升、蒸发的变化等自然因素共同作用的结果,特别是,流域年际降水量波动是湖面水位升降的主要影响因子,人为和工程的影响范围和程度均较小。自羊湖电站1997年运行以来,流域的环境在暖湿的气候大背景下有所改善,且对羊湖水位变化无明显影响。但如果电站不能蓄水与发电并举,达不到总体不消耗羊湖水量的设计目标和水量平衡,对羊湖水位的影响将不可忽视。  相似文献   

10.
刘向军 《盐湖研究》2018,26(2):16-26
青海湖是国内最大的内陆湖泊,位于青藏高原东北缘,因其处在东亚夏季风、印度季风和西风带的交替控制区域,对气候变化十分敏感,成为古环境变化研究的热点地区。有关青海湖的形成演化、环境变化和水文变化的研究也存在多种观点。本研究再分析了青海湖已报道的古环境指标和气候模式模拟的夏季、冬季温度和降水变化,力图更加全面地理解青海湖全新世以来的古环境变化。研究发现早全新世11~8 ka夏季降水量和表面蒸发量较大,冬季降水稀少,湖泊水位只有十余米深,使得青海湖周边风沙活动频繁。并且,早全新世的气候不稳定,经历了频繁和较大幅度的波动。全新世气候适宜期出现在8~6 ka,古环境指标指示这一时期为温暖湿润的气候环境,湖盆内植被以森林草原为主,湖泊水位不断上升。青海湖地区的夏季降水自6 ka开始减少,然而冬季降水增加,同时夏季温度和蒸发量减少,使得湖区植被组成由森林草原向高山草甸转变,湖区大范围形成古土壤。湖区古环境条件在晚全新世距今1.5 ka开始恶化,冬季和夏季降水同时减少,湖泊水位下降,风沙活动再次加强。  相似文献   

11.
近20年青海湖水量变化遥感分析   总被引:2,自引:0,他引:2  
青藏高原湖泊水量的变化是揭示全球气候变化及其区域水循环响应的重要信息载体。区别于常用的水文学方法,本文利用MODIS遥感影像和LEGOS高度计多年连续数据,基于湖泊水位—面积关系,探讨了湖泊水量变化的遥感分析方法,并以青藏高原面积最大的青海湖为例,揭示青海湖近20年来(2001-2016)湖泊水量年内与年际变化特征。主要结论为:青海湖湖泊面积在2001-2016年间整体扩张了187.9 km2,变化速率为11.6 km2/a;水位在2001-2014年间上升了1.15 m,变化速率为0.10 m/a。青海湖水位—面积关系表现为二次函数关系(相关系数R2=0.83)。基于水位—面积关系,进一步估算分析了青海湖水量平衡的净收支及其年内和年际变化。近20年来,青海湖水量总体呈增加趋势,其变化率约为4.5×108m3/a。降水的增加与蒸发能力的下降是湖泊水量增加决定性的驱动因子。  相似文献   

12.
青海湖水文特征及水位下降原因分析   总被引:14,自引:0,他引:14  
秦伯强  施雅风 《地理学报》1992,47(3):267-273
青海湖自有记载以来,湖水位一直处于下降之中。通过分析流域内的各项水文因子的特征及湖泊水量平衡,看出流域内降水有逐步变小的趋势;湖泊长期处于水量收支负平衡中,致使湖水水位下降。降水变小及湖水位下降又改变了流域水文环境,使径流变小、径流系数下降。通过进一步分析发现,青海湖对降水变化的敏感性要大于其它因子的变化。  相似文献   

13.
14.
青海湖水量变化模拟及原因分析   总被引:4,自引:1,他引:3  
为了探讨气候变化和人类活动对流域水文过程的影响,以分布式水文模型SWAT为基础,结合湖泊水量平衡模型,建立了青海湖水位(水量)模型,模拟了青海湖过去几十年水位变化过程。水文因子分析表明,20世纪80~90年代青海湖流域径流和湖泊水位变化的主要原因是气候变化。根据不同气候情景,对未来青海湖水位变化进行了预测。结果表明,未来30年径流增加的可能性比较大,青海湖水位下降速度将会减缓甚至出现上升趋势。这一结果将会缓解青海湖流域水资源日益紧张的局势,并有利于植被的恢复,减少土地沙化面积,对流域生态环境的改善和社会经济的发展将会有极大的帮助。  相似文献   

15.
Qinghai Lake and Zhuye Lake, ~400 km apart, are located in the northwest margin of the Asian summer monsoon. Water of these two lakes mostly comes from the middle and eastern parts of the Qilian Mountains. Previous studies show that the Holocene climate changes of the two lakes implied from lake records are different. Whether lake evaporation plays a role in asynchronous Holocene climate changes is important to understand the lake records. In this paper, we used modern observations beside Qinghai Lake and Zhuye Lake to test the impact factors for lake evaporation. Pan evaporation near the two lakes is mainly related to relative humidity, temperature, vapor pressure and sunshine duration. But tem-perature has different impacts to lake evaporation of the two lakes, which can affect Holocene millennial-scale lake level changes. In addition, differences in relative humidity on the millen-nial-scale would be more significant, which also can contribute to asynchronous lake records.  相似文献   

16.
A combination of water and sediment chemistry was used to investigate carbonate production and preservation in Lake Pumayum Co (altitude 5,030 m a.s.l.), south Tibet, China. We compared the chemical composition of lake water in various parts of the lake with that of input rivers and found that the loss of Ca2+ results from calcite sedimentation induced by evaporation and biogenic precipitation. This is supported by evaporation data from the catchment and δ18O measurements on water. Results suggest that CaCO3 is the predominant carbonate in this lake. There is a positive correlation in the sediments among concentrations of total inorganic carbon (TIC), Ca, total organic carbon (TOC), and total nitrogen, confirming that most carbonates in sediment are endogenic. The Jiaqu River is the largest inflow to Lake Pumayum Co and has a strong influence on both lake water chemistry and sediment composition. The river and lake bathymetry influence carbonate sedimentation by affecting water flow velocity and growing conditions for macrophytes. Different carbon contents and relationships between TIC and TOC in the two long cores from different depths in the lake reveal that hypolimnetic conditions also influence carbonate precipitation and preservation.  相似文献   

17.
青海湖碳酸盐氧同位素环境记录再认识   总被引:1,自引:2,他引:1       下载免费PDF全文
曾承 《盐湖研究》2007,15(1):16-19
青海湖是我国内陆最大的闭流型水体,地处东亚季风和西风的交汇影响区,对区域降水的改变等气候变化反应敏感,其水位变化历史是研究区域季风环境演变极其宝贵和重要的环境档案。青海湖Q14B孔岩芯介壳δ18Oc变化曲线自1991年发表以来,受到国内外同行的广泛关注和继续探讨。依据近年来青海湖气候与环境演变研究的最新研究结果和个人对闭流型湖泊同位素地球化学的认识,对介壳δ18Oc变化曲线进行了重新判读并得出以下结论:14.5~10.5 ka B.P.,青海湖区气候已逐渐从干冷向温湿过渡,季风降水逐渐增加;10.8~10.5 ka B.P.,青海湖处于碳酸盐滩湖环境,湖水深度从几米演变到接近干涸;10.5~9.5 kaB.P.,季风降水增加;9.5~8 ka B.P,湖水位从此前的接近干涸演变到此间的2~8 m,δ18Oc值跌落到一个较低的位置;8~3.5ka B.P,气候条件相对稳定,湖水不断蒸发引起重同位素的富集;3.5~0ka B.P,湖水处于同位素稳定阶段。研究结果还显示,δ18Oc值的短期波动与湖泊水位短期变化关系密切且明显,即水位高低分别对应δ18Oc的低值与高值。δ18Oc值的长期变化与湖泊水位长期变化关系不明显,水位较浅时,二者几乎无关联;水位较深时,水位的长期缓慢下降自然会导致δ18Oc逐渐攀升,而水位的长期缓慢上升也可以伴随δ18Oc逐渐攀升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号