首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Daily and annual integrated rates of primary productivity and community respiration were calculated using physiological parameters measured in oxygen-based photosynthesis-irradiance (P-I) incubations at 8 stations throughout central and western Long Island Sound (cwLIS) during the summer and autumn of 2002 and 2003 and the late spring of 2003. Each calculation takes into account actual variations in incident irradiance over the day and underwater irradiance and standing stock with depth. Annual peak rates, ±95% confidence interval of propagated uncertainty in each measurement, of gross primary production (GPP, 1,730±610 mmol O2 m−2 d−1), community respiration (Rc, 1,660±270 mmol O2 m−2 d−1), and net community production (NCP, 1,160±1,100 mmol O2 m−2 d−1) occurred during summer at the western end of the Sound. Lowest rates of GPP (4±11 mmol O2 m−2 d−1), Rc (−50±300 mmol O2 m−2 d−1), and NCP (−1,250±270 mmol O2 m−2 d−1) occurred during late autumn-early winter at the outer sampled stations. These large ranges in rates of GPP, Rc, and NCP throughout the photic zone of cwLIS are attributed to seasonal and spatial variability. Algal respiration (Ra) was estimated to consume an average of 5% to 52% of GPP, using a literature-based ratio of Ra:Rc. From this range, we established that the estimated Ra accounts for approximately half of GPP, and was used to estimate daily net primary production (NPP), which ranged from 2 to 870 mmol O2 m−2 d−1 throughout cwLIS during the study. Annual NPP averaged 40±8 mol O2 m−2 yr−1 for all sampled stations, which more than doubled along the main axis of the Sound, from 32±14 mol O2 m−2 yr−1 at an eastern station to 82±25 mol O2 m−2 yr−1 at the western-most station. These spatial gradients in productivity parallel nitrogen loads along the main axis of the Sound. Daily integrals of productivity were used to test and formulate a simple, robust biomass-light model for the prediction of phytoplankton production in Long Island Sound, and the slope of the relationship was consistent with reports for other systems.  相似文献   

2.
Ecological processes driving the oxygen budget were investigated in the downstream part of the Seine River and its estuary. Phytoplankton and bacterioplankton production were measured along longitudinal profiles (11 to 17 stations) in a range of low discharges from 300 m3 s−1 in 1993 and 1995 to 140 m3 s−1 in 1996. Values representative of the water column were based on investigations carried out during two tidal cycles. Net primary production was invariably greatest in the freshwater estuary, from Poses to Rouen (from 500 to 1,000 μg C l−1 d−1 between PK 202 and 240) and decreased sharply downstream (from 10 to 25 μg c l−1 d−1 between PK 250 and 310). This decrease was mainly due to the deterioration of the light conditions with the increase in depth and suspended matter concentrations. Heterotrophic activity was maximum in the reach where primary production declined. Judging by the production:respiration ratio (P:R), the system appeared clearly heterotrophic in the Seine River immediately downstream of the Paris region due to high allochthonous organic pollution by the incompletely treated Parisian effluents and in the part of the estuary characterized by intense degradation of autochthonous material. Because the effluents are not treated by a nitrification step, the oxygen consumption due to nitrification was much higher than expected from the P:R ratio. Oxidation of ammonium represented an oxygen consumption of between 1 and 14 g O2 m−2 d−1, almost equalling the sum of heterotrophic respirations that were barely balanced by photosynthesis. The reaeration flux at the water-atmosphere interface was deduced from the calculations and a reaeration coefficient was estimated.  相似文献   

3.
The high permeability of sediments and strong near-bottom currents cause seawater to infiltrate the surface layers of Middle Atlantic Bight shelf deposits. In this study, sandy sediment cores from 11 to 12 m water depth were percolated with filtered seawater on shipboard. Sedimentary oxygen consumption (SOC) increased non-linearly with pore water flow, approaching maximum rates of 120 mmol m−2 d−1 (May 2001) or 75 mmol m−2 d−1(July 2001). The addition of acetate to the inflowing water promptly enhanced the release of dissolved inorganic carbon (DIC) from the cores. DIC production rates were a linear function of acetate concentration, ranging from 100 to 300 mmol m−2 d−1 without substrate addition to 572 mmol m−2 d−1 with 100 mM acetate. The sediments also hydrolyzed a glucose pseudopolymer, and the liberated glucose prompted an increase of SOC. Our results suggest that decomposition rates of organic matter in permeable sands can exceed those of fine-grained, organic-rich deposits, when water currents cause advective interstitial flow, supplying the subsurface microbial community with degradable material and electron acceptors. We conclude that the highly permeable sand beds of the Middle Atlantic Bight are responsive within minutes to hours and efficiently operate as biocatalytical filters.  相似文献   

4.
Responses of autotrophic and heterotrophic processes to nutrients and trace elements were examined in a series of experimental estuarine food webs of increasing trophic complexity using twenty 1-m3 mesocosms. Nutrients (nitrogen and phosphorus) and trace elements (a mix of arsenic, copper, cadmium) were added alone and in combination during four experimental runs spanning from spring 1997 to spring 1998. Diel changes in dissolved oxygen were used to examine whole system gross primary production (WS-GPP), respiration (WS-RESP), and net ecosystem metabolism (NEM). Nutrient and trace element additions had the greatest effect on WS-GPP, WS-RESP, and NEM; trophic complexity did not significantly affect any of these parameters (p>0.3). Effects of trophic complexity were detected in nutrient tanks where bivalves significantly (p=0.03) reduced WS-GPP. Nutrient additions significantly enhanced WS-GPP and to a lesser extent WS-RESP during most mesocosm runs. The system shifted from net heterotrophy (−17.2±1.8 mmol C m−3 d−1) in the controls to net autotrophy (29.1±7.6 mmol C m−3 d−1) in the nutrient tanks. The addition of trace elements alone did not affect WS-GPP and WS-RESP to the same extent as nutrients, and their effects were more variable. Additions of trace elements alone consistently made the system more net heterotrophic (−24.9±1.4 mmol C m−3 d−1) than the controls. When trace elements were added in combination with nutrients, the nutrient-enriched system became less autotrophic (1.6±3.1 mmol C m−3 d−1). The effects of trace elements on NEM occurred primarily through reductions in WS-GPP rather than increases in WS-RESP. Our results suggest that autotrophic and heterotrophic processes respond differently to these stressors.  相似文献   

5.
Egg production of planktonic copepods, is commonly measured as a proxy for secondary production in population dynamics studies and for quantifying food limitation. Although limitation of copepod egg production by food quantity or quality is common in natural waters, it appears less common or severe in estuaries where food concentrations are often high. San Francisco Estuary, California, has unusually low concentrations of chlorophyll compared to other estuaries. We measured egg production rates of three species ofAcartia, with dominate the zooplankton biomass at salinity above 15 psu, on 36 occasions during 1999–2002. Egg production was determined by incubating up to 40 freshly collected individual copepods for 24 h in 140 ml of ambient water. Egg production was less than 10 eggs female−1 d−1 most of the year, but as high as 52 eggs female−1 d−1 during month-long spring phytoplankton blooms. Egg production was a saturating function of total chlorophyll concentration with a mean of 30 eggs female−1 d−1 above a chlorophyll concentration of 12±6 mg chl m−3. We take chlorophyll to be a proxy for total food ofAcartia, known to feed on microzooplankton as well as phytoplankton. These findings, together with long-term records of chlorophyll, concentration and earlier studies of abundance of nauplius larvae in the estuary, imply chronic food limitation ofAcartia species, with sufficient food for maximum egg production <10% of the time over the last 25 yr. These results may show the most extreme example of food limitation of copepod reproduction in any temperate estuary. They further support the idea that estuaries may provide suitable habitat forAcartia species by virtue of other factors than high food concentration.  相似文献   

6.
Benthic metabolism and nutrient exchange across the sediment-water interface were examined over an annual cycle at four sites along a freshwater to marine transect in the Parker River-Plum Island Sound estuary in northeastern Massachusetts, U.S. Sediment organic carbon content was highest at the freshwater site (10.3%) and decreased along the salinity gradient to 0.2% in the sandy sediments at the marine end of the estuary. C:N ratios were highest in the mid estuary (23:1) and lowest near the sea (11:1). Chlorophyll a in the surface sediments was high along the entire length of the estuary (39–57 mg chlorophyll a m−2) but especially so in the sandy marine sediments (172 mg chlorophyll a m−2). Chlorophyll a to phaeophytin ratios suggested most chlorophyll is detrital, except at the sandy marine site. Porewater sulfide values varied seasonally and between sites, reflecting both changes in sulfate availability as overlying water salinity changed and sediment metabolism. Patterns of sediment redox potential followed those of sulfide. Porewater profiles of inorganic N and P reflected strong seasonal patterns in remineralization, accumulation, and release. Highest porewater NH4 + values were found in upper and mid estuarine sediments, occasionally exceeding 1 mM N. Porewater nitrate was frequently absent, except in the sandy marine sediments where concentrations of 8 μM were often observed. Annual average respiration was lowest at the marine site (13 mmol O2 m−2 d−1 and 21 mmol TCO2 m−2 d−1) and highest in the mid estuary (130 mmol O2 m−2 d−1 and 170 mmol TCO2 m−2 d−1) where clam densities were also high. N2O and CH4 fluxes were low at all stations throughout the year: Over the course, of a year, sediments varied from being sources to sinks of dissolved organic C and N, with the overall spatial pattern related closely to sediment organic content. There was little correlation between PO4 3− flux and metabolism, which we attribute to geochemical processes. At the two sites having the lowest salinities, PO4 3− flux was directed into the sediments. On average, between 22% and 32% of total system metabolism was attributable to the benthos. The mid estuary site was an exception, as benthic metabolism accounted for 95% of the total, which is attributable to high densities of filter-feeding clams. Benthic remineralization supplied from less than 1% to over 190% of the N requirements and 0% to 21% of the P requirements of primary producers in this system. Estimates of denitrification calculated from stoichiometry of C and N fluxes ranged from 0% for the upper and mid estuary site to 35% for the freshwater site to 100% of sediment organic N remineralization at the marine site. We hypothesize that low values in the upper and mid estuary are attributable to enhanced NH4 + fluxes during summer due to desorption of exchangeable ammonium from rising porewater salinity. NH4 + desorption during summer may be a mechanism that maintains high rates of pelagic primary production at a time of low inorganic N inputs from the watershed.  相似文献   

7.
Gulf sturgeon,Acipenser oxyrinchus desotoi, forage extensively in the Suwannee River estuary following emigration out of the Suwannee River, Florida. While in the estuary, juvenile Gulf sturgeon primarily feed on benthic infauna. In June–July 2002 and February–April 2003, random sites within the estuary were sampled for benthic macrofauna (2002 n = 156; 2003 n = 103). A mean abundance of 2,562 ind m−2 (SE ± 204) was found in the summer, with significantly reduced macrofaunal abundance in the winter (mean density of 1,044 ind m−2, SE ± 117). Benthic biomass was significantly higher in the summer with an average summer sample dry weight of 5.92 g m−2 (SE ± 0.82) compared to 3.91 g m−2 (SE ± 0.67) in the winter. Amphipods and polychaetes were the dominant taxa collected during both sampling periods. Three different estimates of food availability were examined taking into account principal food item information and biomass estimates. All three estimates provided a slightly different view of potential resources but were consistent in indicating that food resource values for juvenile Gulf sturgeon are spatially heterogeneous within the Suwannee River estuary.  相似文献   

8.
In the lower delta of the Paraná River, at the head of the Río de la Plata estuary (Argentina), we compared net aboveground primary production (NAPP) and soil properties of the dominant macrophyteScirpus giganteus (Kunth) in a floating and an attached marsh community. Both marshes are tidally influenced but in different ways. The floating marsh site is relatively isolated from tidal influences because its ability to float makes it resistant to overland flow and to sediment inputs from the estuary. The attached marsh lacks the capacity to float and receives sediment supplies from the estuary through overland flow. These hydrologic differences are reflected in lower mineral content in sediments of the floating marsh. Using a leaf tagging technique, estimated NAPP was 1,109 ± 206 g m−2 yr−1 for the floating marsh and 1,866 ±258 g m−2 yr−1 for the attached marsh. We attribute the lower NAPP of the floating marsh to isolation from sediment input from overland flow.  相似文献   

9.
The basal area and productivity of managrove wetlands are described in relation to selected soil properties to understand the general pattern of optimum forest stature at the mouth of estuaries in the Everglades, such as the Shark River Slough, Florida (U.S.). The basal area of mangroves decreases from 40.4 m2 ha−1 and 39.7 m2 ha−1 at two stations 1.8 km and 4.1 km from the estuary mouth to 20.7 m2 ha−1 and 19.6 m2 ha−1 at two sites 9.9 km and 18.2 km from the mouth, respectively. The gradient in basal area at these four sites is mostly the result of approximately 34 yr of growth since Hurricane Donna. Wood productivity is higher in the lower estuary (10.7 Mg ha−1 yr−1 and 12.0 Mg ha−1 yr−1) than in the upper estuary (3.2 Mg ha−1 yr−1 and 4.2 Mg ha−1 yr−1). Porewater salinity among these four mangrove sites during seasonal sampling in 1994 and 1995 ranged from 1.6 g kg−1 to 33.5 g kg−1, while sulfide was generally<0.15 mM at all sites. These soil values indicate that abiotic stress cannot explain the decrease in forest structure along this estuarine gradient. Concentrations of nitrogen (N) and phosphorus (P) are more closely related to patterns of forest development, with higher soil fertility at the mouth of the estuary as indicated by higher concentrations of extractable ammonium, total soil P, and available P, along with higher ammonium production rates. The more fertile sites of the lower estuary are dominated by Laguncularia racemosa, whereas the less fertile sites in the intermediate and upper estuary are dominated by Rhizophora mangle. Relative N mineralization per unit of total N is higher in the lower estuary and is related positively to concentrations of available P, indicating the importance of turnover rates and nutrient interactions to soil fertility. Concentrations of Ca-bound P per volume soil in the lower estuary is 40-fold higher than in the upper estuary, and along with an increase in residual P in the upper estuary, indicate a shift from mineral to organic P along the estuarine gradient. Mineral inputs to the mouth of Shark River estuary from the Gulf of Mexico (rather than upland inputs) apparently control the patterns of mangrove structure and productivity.  相似文献   

10.
Hypoxia is emerging as a major threat to marine coastal biota. Predicting its occurrence and elucidating the driving factors are essential to set successful management targets to avoid its occurrence. This study aims to elucidate the effects of warming on the likelihood of hypoxia. High-frequency dissolved oxygen measurements have been used to estimate gross primary production (GPP), net ecosystem production (NEP) and community respiration (CR) in a shallow macroalgae (Caulerpa prolifera) ecosystem in a highly human-influenced closed Mediterranean bay. Daily averaged GPP and CR ranged from 0 to 1,240.9 and 51.4 to 1,297.3?mmol?O2?m?2?day?1, respectively. The higher GPP and CR were calculated for the same day, when daily averaged water temperature was 28.3?°C, and resulted in a negative NEP of ?56.4?mmol?O2?m?2?day?1. The ecosystem was net heterotrophic during the studied period, probably subsidized by allochthonous organic inputs from ground waters and from the surrounding town and boating activity. Oxygen dynamics and metabolic rates strongly depend on water temperature, with lower oxygen content at higher temperatures. The probability of hypoxic conditions increased at a rate of 0.39?% °C?1 (±0.14?% °C?1). Global warming will increase the likelihood of hypoxia in the bay studied, as well as in other semi-enclosed bays.  相似文献   

11.
To characterize the isotopic composition of organisms at the base of the food web and the controls on their variability, the concentration and δ13C isotopic composition of dissolved inorganic carbon (DIC) and plankton δ13C, δ15N, and δ34S were measured. The measurements were made during periods of high and low river flow in Apalachicola Bay, Florida, United States, over 3 yr. DIC concentration and δ13C values were related to salinity, indicating that conservative mixing of riverine and marine waters was responsible for the overall distributions. The usefulness of DIC δ13C data for characterizing the trophic processes within the estuary was dependent upon the residence time of water within the season. Plankton δ13C values varied from −22‰ to −30‰ and were directly related to estuarine DIC δ13C, offset by a factor of roughly −20‰. This offset factor varied with salinity. Values of δ34S in estuarine plankton (station means ranged from 11.4‰ to 13.1‰) were depleted relative to marine plankton (17.7±0.4‰) possibly due to the admixture of34S-depleted sedimentary sulfide with estuarine samples. Values of δ34S in plankton were not related to δ13C values of plankton and were only weakly correlated to the salinity of the water from which the plankton were collected, indicating that marine sulfate was the primary source of planktonic sulfur. Values of δ15N in plankton varied from 5.5‰ to 10.7‰ and appeared related to dominance of the sample by phytoplankton or zooplankton. Estuarine plankton was15N enriched relative to offshore plankton and estuarine sediment.  相似文献   

12.
San Quintin Bay, Mexico, is a hypersaline coastal lagoon where the main external forcing of physical and biogeochemical processes is oceanic. Non-conservative fluxes of inorganic N (ΔDIN) and P (ΔDIP), and aspects of net ecosystem metabolism were studied in this lagoon during August 1995, August 1996, and February 1996, by following the LOICZ budgetary modeling approach. The whole-system water exchange time during summer (≈13 d) was shorter than in winter (≈26 d) as northwesterly winds enhancing mixing with the ocean are more intense during the spring-summer upwelling season. Whole-bay ΔDIP values of +0.2 to +0.3 mmol m?2 d?1 in August, and <+0.01 mmol m?2 d?1 in February indicate that the system is a net source of dissolved inorganic phosphorus (DIP). DIP fluxes from the Bay to the ocean during August are probably balanced by a net import of particulate organic matter between 1,000–1,300 × 103 mol C d?1, equivalent to a net ecosystem production (NEP) between ?24 and ?31 mmol C m?2 d?1. ΔDIN showed opposite trends in August 1995 and August 1996, with a net import of 13×103 mol N d?1 and a net export of 30× 103 mol N d?1, respectively. However, N fixation minus denitrification (“apparent denitrification”) estimates of ≈?4 mmol N m?2 d?1 in both periods indicate that San Quintin Bay is a net sink of nitrogen. Results from a 3-box model indicate that during summer Box C, adjacent to the ocean, contributed 70–80% of the excess DIP produced in the whole-system. This observation and high apparent denitrification values of ≈?7 mmol N m?2 d?1 at the entrance of the Bay, suggest that the net heterotrophic condition of San Quintin Bay in summer is largely determined by imports of labile phytoplanktonic carbon generated in the adjacent ocean during upwelling.A net flux of organic carbon of 30×106 mol C yr?1 was estimated from Box C, adjacent to the ocean, to Box B, locally known as Bahia Falsa, which is the area designated for oyster aquaculture in the lagoon. It is estimated that this net organic carbon supply is almost equivalent to the annual oyster food demand; our estimate is that oyster aquaculture in San Quintin Bay accounts for the vast majority of the net heterotrophy of Bahia Falsa.  相似文献   

13.
Net ecosystem metabolism (NEM) was measured in the Piauí River estuary, NE Brazil. A mass balance of C, N, and P was used to infer its sources and sinks. Dissolved inorganic carbon (DIC) concentrations and fluxes were measured over a year along this mangrove dominated estuary. DIC concentrations were high in all estuarine sections, particularly at the fluvial end member at the beginning of the rainy season. Carbon dioxide concentrations in the entire estuary were supersaturated throughout the year and highest in the upper estuarine compartment and freshwater, particularly at the rainy season, due to washout effects of carbonaceous soils and different organic anthropogenic effluents. The estuary served as a source of DIC to the atmosphere with an estimated flux of 13 mol CO2 m?2 year?1. Input from the river was 46 mol CO2 m?2 year?1. The metabolism of the system was heterotrophic, but short periods of autotrophy occurred in the lower more marine portions of the estuary. The pelagic system was more or less balanced between auto- and heterotrophy, whereas the benthic and intertidal mangrove region was heterotrophic. Estimated annual NEM yielded a total DIC production in the order of 18 mol CO2 m?2 year?1. The anthropogenic inputs of particulate C, N, and P, dissolved inorganic P (DIP), and DIC were significant. The fluvial loading of particulate organic carbon and dissolved inorganic nitrogen (DIN) was largely retained in two flow regulation and hydroelectric reservoirs, promoting a reduction of C:N and C:P particulate ratios in the estuary. The net nonconservative fluxes obtained by a mass balance approach revealed that the estuary acts as a source of DIP, DIN, and DIC, the latter one being almost equivalent to the losses to the atmosphere. Mangrove forests and tidal mudflats were responsible for most of NEM rates and are the main sites of organic decomposition to sustain net heterotrophy. The main sources for this organic matter are the fluvial and anthropogenic inputs. The mangrove areas are the highest estuarine sources of DIP, DIC, and DIN.  相似文献   

14.
The waters of the Seine river estuary, located in a highly anthropogenicized area in the northern part of France, are of poor microbiological quality; the concentrations of faecal bacteria usually exceed the European Union bathing and recreational water directives. The aim of the present study was to identify the main sources of the faecal pollution of the Seine estuary in order to help define priorities for management and sanitation efforts. Budgets of faecal coliform (FC) inputs to the estuary were established for various hydrological conditions. Main sources of FC were the outfalls of the treated effluents of the wastewater treatment plants (WWTPs) located along the estuary, the faecal bacteria brought in through the tributaries of the Seine estuary, and the faecal bacteria transported by the Seine river flow at the estuary entrance at Poses dam. In order to quantify these inputs, FC were enumerated during sampling campaigns conducted for various hydrological conditions in the Seine at the entrance of the estuary, in the tributaries close to their confluence with the estuary, and in the effluents of some WWTPs located along the estuary. The importance of the flux of FC transported by the Seine river flow at the estuary entrance at Poses dam decreased from 92% of the total FC input when the flow rate was high (717 m3 s−1) to 5% when flow rate was low (143 m3 s−1). The release of the domestic wastewaters of the large city of Paris located 120 km upstream from the entrance of the estuary was mainly responsible for this microbiological pollution. At low flow rates, the tributaries represent the most important source of FC (64–76% for flow rates of the Seine at Poses at approximately 150 m3 s−1), mainly from the Robec and Eure rivers. The treated wastewater of the WWTPs located along the estuary was the second source of FC for low flow conditions (19–30%); it was less important for high to intermediate flow rate conditions.  相似文献   

15.
Benthic oxygen, dinitrogen, and nutrient fluxes (NH4+, NO3, and PO43−) were measured monthly during a 1-year period at two locations in Weeks Bay, a shallow (1.4 m) and eutrophic estuary in Alabama. Gross primary productivity (GPP), ecosystem respiration (R), and net ecosystem metabolism were determined from high-frequency dissolved oxygen measurements. Peak water column NO3 (55 μM) and chlorophyll a (138 μg/l) concentrations were measured during spring and fall, respectively. Sediments were a net source of NH4+ (102 μmol m−2 h−1) and PO43− (0.9 μmol m−2 h−1) but a sink for NO3 (−30 μmol m−2 h−1). Benthic N2 fluxes indicated net N fixation (12 μmol N m−2 h−1). Sediment oxygen demand (0.55 g O2 m−2 day−1) accounted for <10% of R (7.3 g O2 m−2 day−1). Despite high GPP rates (4.7 g O2 m−2 day−1), the estuary was net heterotrophic. Benthic regeneration supplied, on average, 7.5% and 4% of primary productivity N and P demands, respectively. These results contrast with the conventional view that benthic regeneration accounts for a large fraction of phytoplankton nutrient demand in shallow estuaries.  相似文献   

16.
Iron and manganese redox cycling in the sediment — water interface region in the Kalix River estuary was investigated by using sediment trap data, pore-water and solid-phase sediment data. Nondetrital phases (presumably reactive Fe and Mn oxides) form substantial fractions of the total settling flux of Fe and Mn (51% of Fetotal and 84% of Mntotal). A steady-state box model reveals that nondetrital Fe and Mn differ considerably in reactivity during post-depositional redox cycling in the sediment. The production rate of dissolved Mn (1.6 mmol m–2 d–1) exceeded the depositional flux of nondetrital Mn (0.27 mmol m–2 d–1) by a factor of about 6. In contrast, the production rate of upwardly diffusing pore-water Fe (0.77 mmol m–2 d–1) amounted to only 22% of the depositional flux of nondetrital Fe (3.5 mmol m–2 d–1). Upwardly diffusing pore-water Fe and Mn are effectively oxidized and trapped in the oxic surface layer of the sediment, resulting in negligible benthic effluxes of Fe and Mn. Consequently, the concentrations of nondetrital Fe and Mn in permanently deposited, anoxic sediment are similar to those in the settling material. Reactive Fe oxides appear to form a substantial fraction of this buried, non-detrital Fe. The in-situ oxidation rates of Fe and Mn are tentatively estimated to be 0.51 and 0.16–1.7 mol cm–3 d–1, respectively.  相似文献   

17.
Sulfate reduction rates were measured over the course of a year in the sediments of aJuncus roemerianus marsh located in coastal Alabama. Sulfate reduction rates were typically highest in the surface 0–2 cm and at depths corresponding to peak belowground biomass of the plants. The highest volume-based sulfate reduction rate measured was 1,350 μmol liter-sediment−1 d−1 in September 1995. Areal sulfate reduction rates (integrated to 20 cm depth) were strongly correlated to sediment temperature and varied seasonally from 15.2 mmol SO 4 2− m−2 d−1 in January 1995 to 117 mmol SO 4 2− m−2 d−1 in late August 1995. Despite high sulfate reduction rates porewater dissolved sulfide concentrations were low (<73 μM), indicating rapid sulfide oxidation or precipitation. Sulfate depletion data indicated that net oxidation of sediment sulfides occurred in March through May, following a period of infrequent tidal flooding and during a period of high plant production. Porewater Fe(II) reached very high levels (maximum of 969 μM; mean for all dates was 160 μM), particularly during periods of high sulfate reduction. The annual sulfate reduction rate integrated over the upper 20 cm of sediment was 22.0 mol SO 4 2− m−2 yr−1, which is among the highest rates measured in a wetland ecosystem. Based on literature values of net primary production inJ. roemerianus marshes, we estimate that an amount equivalent to 16% to 90% of the annual belowground production may be remineralized through sulfate reduction.  相似文献   

18.
Previous measurements from cool microtidal temperate areas suggest that microphytobenthic incorporation of nitrogen (N) exceeds N removal by denitrification in illuminated shallow-water sediments. The present study investigates if this is true also for fully nontidal sediments in the Baltic Sea., Sediment-water fluxes of inorganic (DIN) and, organic nitrogen (DON) and oxygen, as well as denitrification, were measured in early autumn and spring, in light and dark, at four sites representing different sediment types. All sediments were autotrophic during the daytime both in the autumn and spring. On a 24-h time scale, they were autotrophic in the spring and heterotrophic in early autumn. Sediments funcitoned as sources of DIN and DON during the autumn and sinks during the spring, with DON fluxes dominating or being as important as DIN fluxes. Microphytobenthos (MPB) activity controlled fluxes of both DIN and DON. Significant differences between sites were found, although sediment type (sand or silt) had no consistent effect on the magnitude of MPB production or nutrient fluxes. The clearest effect related to sediment type was found for denitrification, although only in the autumn, with higher rates in silty sediments. Estimated N assimilation by MPB, based on both net primary production (0.7–6.5 mmol N m−2 d−1) and on 80% of gross primary production (1.9–9.4 mmol N m−2 d−1) far exceeded measured rates of denitrification (0.01–0.16 mmol N m−2 d−1). A theoretical calculation showed that MPB may incorporate between 40% and 100% of the remineralized N, while denitrification removes, <5%. MPB assimilation of N appears to be a far more important N consuming process than denitrification in these nontidal, shallow-water sediments.  相似文献   

19.
Tidal currents and the spatial variability of tidally-induced shear stress were studied during a tidal cycle on four intertidal mudflats from the fluvial to the marine part of the Seine estuary. Measurements were carried out during low water discharge (<400 m3 s−1) in neap and spring tide conditions. Turbulent kinetic energy, covariance, and logarithmic profile methods were used and compared for the determination of shear stress. The cTKE coefficient value of 0.19 cited in the literature was confirmed. Shear stress values were shown to decrease above mudflats from the mouth to the fluvial part of the estuary due to dissipation of the tidal energy, from 1 to 0.2 N m−2 for spring tides and 0.8 to 0.05 N m−2 for neap tides. Flood currents dominate tidally-induced shear stress in the marine and lower fluvial estuary during neap and spring tides and in the upper fluvial part during spring tides. Ebb currents control tidally-induced shear stress in the upper fluvial part of the estuary during neap tides. These results revealed a linear relationship between friction velocities and current velocities. Bed roughness length values were calculated from the empirical relationship given by Mitchener and Torfs (1996) for each site; these values are in agreement with the modes of the sediment particle-size distribution. The influence of tidal currents on the mudflat dynamics of the Seine estuary was examined by comparing the tidally-induced bed shear stress and the critical erosion shear stress estimated from bed sediment properties. Bed sediment resuspension induced by tidal currents was shown to occur only in the lower part of the estuary.  相似文献   

20.
Benthic fluxes in two southern California borderland basins have been estimated by modeling water column property gradients, by modeling pore water gradients and by measuring changes in concentration in a benthic chamber. Results have been used to compare the different methods, to establish budgets for biogenic silica and carbon and to estimate rate constants for models of CaCO3 dissolution. In San Pedro Basin, a low oxygen, high sedimentation rate area, fluxes of radon-222 (86 ± 8 atoms m−2 s−1), SiO2 (0.7 ± 0.1 mmol m−2 d−1), alkalinity (1.7 ± 0.3 meq m−2 d−1), TCO2 (1.9 ± 0.3 mmol m−2 d−1) and nitrate (−0.8 ± 0.1 mmol m−2 d−1) measured in a benthic chamber agree within the measurement uncertainty with fluxes estimated from modeling profiles of nutrients and radon obtained in the water column. The diffusive fluxes of radon, SiO2 and TCO2 determined from modeling the sediment and pore water also agree with the other approaches. Approximately 33 ± 13% of the organic carbon and 37 ± 47% of the CaCO3 arriving at the sea floor are recycled. In San Nicolas Basin, which has larger oxygen concentrations and lower sedimentation rates than San Pedro, the fluxes of radon (490 ± 16 atoms m−2 s−1), SiO2 (0.7 ± 0.1 mmol m−2 d−1), alkalinity (1.7 ± 0.3 meq m−2 d−1), TCO2 (1.7 ± 0.2 mmol m−2 d−1), oxygen (−0.7 ± 0.1 mmol m−2 d−1) and nitrate (-0.4 ± 0.1 mmol m−2 d−1) determined from chamber measurements agree with the water column estimates given the uncertainty of the measurements and model estimates. Diffusion from the sediments matches the lander-measured SiO2 and PO43− (0.017 ± 0.002 mmol m−2 d−1) fluxes, but is not sufficient to supply the radon or TCO2 fluxes observed with the lander. In San Nicolas Basin 38 ± 9% of the organic carbon and 43 ± 22% of the CaCO3 are recycled. Approximately 90% of the biogenic silica arriving at the sea floor in each basin is recycled. The rates of CaCO3 dissolution determined from chamber flux measurements and material balances for protons and electrons are compared to those predicted by previously published models of CaCO3 dissolution and this comparison indicates that in situ rates are comparable to those observed in laboratory studies of bulk sediments, but orders of magnitude less than those observed in experiments done with suspended sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号