首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Laboratory experiments with a rotating tank confirm the bifurcation character of a barotropic flow driven by an inflow and an outflow described by Sakai (1986). The model, a circular basin with a topographic β-effect, simulates a mid-latitude oceanic feature. At a low Rossby number, stationary Rossby waves are observed which are symmetrical with a line connecting the inlet and the outlet. As the Rossby number increases, a bifurcation occurs and two kinds of vortex flows are observed. In the vortex, potential vorticity is almost uniform. In addition to the two vortex flows, a jet-like inertial flow can also be observed. In general, thre results of these experiments agree well with those of a low-order model and a numerical model.  相似文献   

2.
利用1992年10月22日-2001年7月17日扣除年循环的T/P和ERS-1/-2的卫星融合高度计资料,应用二维Radon变换方法,对太平洋和大西洋的洋盆东部、西部的大洋Rossby波的纬向传播速度进行了分析与对比,并将二者分别与经典线性理论值比较,得出洋盆西部的Rossby波普遍比洋盆东部传播要快;中纬度海域大洋Rossby波的传播速度观测值与理论值的比率小于前人结果;并且在热带及副热带海域,大洋Rossby波的传播速度的观测值要低于理论值的结论。  相似文献   

3.
The wind-driven general circulation of the Mediterranean Sea is studied using a primitive equation model. The model uses a 0.25° horizontal resolution and eight or 16 levels in the vertical. The model uses the Mediterranean basin geometry, and the Strait of Gibraltar is closed. The vertical density structure is initialized with annual average data, and the temperature and salinity values are fixed at the surface to simulate perpetual annual mean conditions. The wind forcing consists of monthly mean climatological stresses.The results show that the general circulation of the Mediterranean Sea has a multiple time-scale character (seasonal excursions and steady state amplitudes are comparable) and it is composed by sub-basin scale gyres corresponding to the scale of the wind stress curl centers. The steady state circulation (annual mean average) is determined by a Sverdrup balacne modified by viscous effects.The unsteady vertically integrated transport circulation consists of sub-basin scale gyres similar to the steady state transport components, which amplify seasonally and the partial or total reversal of the currents in many subportions of the basin. The gyres can be stationary in position or propagating. This seasonal ocean response is partly constituted by Rossby modes due to the wind stress curl annual harmonic. The baroclinic circulation shows the seasonal shift of the North African Current from a position along the African coasts during winter to the center of the Balearic and Ionian basin during summer.  相似文献   

4.
The interannual variations of sea level at Chichi-jima and five other islands in the subtropical North Pacific are calculated for 1961–95 with a model of Rossby waves excited by wind. The Rossby-wave forcing is significant east of 140°E. Strong forcing of upwelling (downwelling) Rossby wave occurs during El Niño (La Niña) and warm (cold) water anomaly in the eastern equatorial Pacific. The first and second baroclinic modes of Rossby wave are more strongly generated than the barotropic mode in the study area. A higher vertical mode of Rossby wave propagates more slowly and is more decayed by eddy dissipation. The best coefficient of vertical eddy dissipation is determined by comparing the calculated sea level with observation. The variation in sea level at Chichi-jima is successfully calculated, in particular for the long-term change of the mean level between before and after 1986 with a rise in 1986 as well as the variations with periods of two to four years after 1980. It is concluded that variations of sea level at Chichi-jima are produced by wind-forced Rossby waves, the first baroclinic wave primarily and the barotropic wave secondly. The calculation for other islands is less successful. Degree of the success in calculation almost corresponds to a spatial difference in quantity of wind data, and seems to be determined by quality of wind data.  相似文献   

5.
利用正压涡度方程,研究了缓变风场驱动下水平尺度1000km平底方形海盆中海洋环流的响应。结果表明,缓变风场驱动下海洋环流的响应是多涡型的,线性情形下多涡结构表现为共振受迫Rossby波;非线性情形下受迫Rossby波被扭曲,多涡结构是由受迫Rossby波和次海盆尺度的惯性再循环共同构成。无论是稳定风场还是缓变风场,非线性作用越强,环流越趋于不稳定;非线性作用强且水平耗散作用弱时,非线性不稳定过程可能完全掩盖了变化的风旋度向海盆涡度输人的影响,此时风的变化对环流型式不再重要。  相似文献   

6.
Time-longitude diagrams of monthly anomalies of TOPEX/Poseidon sea surface height (SSH), Levitus steric height, COADS wind stress curl, as well as meridional surface wind averaged over the northern South China Sea (SCS) from 18° to 22°N, exhibit a coherent westward phase propagation, with a westward propagation speed of about 5 cm s−1. The consistency between oceanic and atmospheric variables indicates that there is a forced Rossby wave in the northern SCS. The horizontal patterns of monthly SSH anomalies from observations and model sensitivity experiments show that the forced Rossby wave, originating to the northwest off Luzon Island, actually propagates west-northwestward towards the Guangdong coast because of zonal migration of the meridional surface wind. The winter Luzon Cold Eddy (LCE), which has been found from field observations, can be identified as a forced Rossby wave with a negative SSH anomaly in winter. It corresponds to strong upwelling and a negative temperature anomaly. Sensitivity experiments show that the wind forcing controls the generation of the LCE, while the Kuroshio is of minor importance.  相似文献   

7.
Abstract

Spherical harmonic tidal solutions have been obtained at the frequencies of the 32 largest luni‐solar tides using prior theory of the author. That theory was developed for turbulent, nonglobal, self‐gravitating, and loading oceans possessing realistic bathymetry and linearized bottom friction; the oceans satisfy no‐flow boundary conditions at coastlines. In this theory the eddy viscosity and bottom drag coefficients are treated as spatially uniform. Comparison of the predicted degree‐2 components of the Mf, PI, and M2 tides with those from numerical and satellite‐based tide models allows the ocean friction parameters to be estimated at long and short periods. Using the 32 tide solutions, the frequency dependence of tidal admittance is investigated, and the validity of sideband tide models used in satellite orbit analysis is examined. The implications of admittance variability for oceanic resonances are also explored. By extending the theory to include a second constraint derived from tide observations or data‐constrained tide models, it is possible to assess those models from a fluid dynamic perspective. One general conclusion from such exercises is that the large higher‐degree admittances of current short‐period tide models are dynamically incompatible with their degree‐2 admittances. Eventually it may prove possible to produce dynamically sound, observationally consistent tide models by combining the author's tide theory with satellite orbit determination.  相似文献   

8.
In inviscid shallow water models currents generated by spatially uniform winds are transient and are eliminated by Rossby and equatorial Kelvin waves excited at the eastern and western coasts, respectively. The inclusion of mixing processes can lead to an entirely different steady state in which currents are present. It is shown that the mixing of heat affects the steady state more than does the mixing of momentum because the waves that are important in the oceanic adjustment are divergent.  相似文献   

9.
This paper analyzes the properties of solutions to the equations describing the motion of a stratified fluid in the class of velocity and temperature fields linear in coordinates. For an ideal fluid, these equations, on the one hand, are exact for the corresponding hydrodynamic problem and, on the other hand, are identical to the equations of motion for a heavy top. In a conservative case, the equations of motion of a top share common solutions with the equations of geophysical fluid dynamics and reproduce motions similar to those existing in the theory of the large-scale atmospheric circulation. This study considers the effects of viscosity and heat conduction in the fluid, which are, in a sense, similar to the effect of friction in the case of a top. The influence of deflections of the vectors of gravity and external rotation from their standard directions for a plane-parallel atmosphere is also considered. The regimes of motions that are described by the starting equations and approximations commonly used to model the atmospheric general circulation (the quasi-geostrophic approximation) are analyzed. It is shown that these equations correctly describe the Hadley and Rossby circulation regimes and transitions between them that are observed in numerical and laboratory experiments. Particular attention is given to the consistency between different regimes of the exact equations and their quasi-geostrophic approximations, which is manifested for small Rossby numbers and is generally absent for large Rossby numbers. The asymptotic behaviors of the curves of transition between the Hadley and Rossby regimes under the conditions of breaking the external symmetry of flows are obtained. These asymptotics explain the corresponding transition boundaries for the regimes observed in the known experiments in annuluses.  相似文献   

10.
An expansion theorem is derived for Rossby normal modes in a closed rectangular basin and the set of Rossby normal modes is proved to be complete. This theorem provides a general linear solution to the initial value problem as well as to the response problem. In particular, the Green's function is obtained for the instantaneous localized torque anywhere in the basin. Weakly nonlinear versions are solved also by the combination of the general linear solution with the asymptotic expansion in terms of small amplitude. Further, an application is suggested to the spectral method of numerical simulation based on Rossby normal modes relevant to the more nonlinear evolution equation on a-plane, instead ofsin functions or Chebyshev polynomials, which have been employed conventionally for this purpose.  相似文献   

11.
In this paper, we present the results from a 1/8° horizontal resolution numerical simulation of the Mediterranean Sea using an ocean model (DieCAST) that is stable with low general dissipation and that uses accurate control volume fourth-order numerics with reduced numerical dispersion. The ocean model is forced using climatological monthly mean winds and relaxation towards monthly climatological surface temperature and salinity. The variability of the circulation obtained is assessed by computing the volume transport through certain sections and straits where comparison with observations is possible. The seasonal variability of certain currents is reproduced in the model simulations. More important, an interannual variability, manifested by changes in currents and water mass properties, is also found in the results. This may indicate that the oceanic internal variability (not depending on external atmospheric forcing), is an important component of the total variability of the Mediterranean circulation; variability that seems to be very significant and well documented by in situ and satellite data recovered in the Mediterranean Sea during the last decade.  相似文献   

12.
To distinguish true red tide water (particularly Cochlodinium polykrikoides blooms) from non-red tide water (false satellite high chlorophyll water) in the South Sea of Korea, we developed a systematic classification method using spectral information from MODIS level products and applied it to five different harmful algal bloom events. Red tide and nonred tide waters were classified based on four different criteria. The first step revealed that the radiance peaks of potential red tide water occurred at 555 and 678 nm. The second step separated optically different waters that were influenced by relatively low and high contributions of colored dissolved organic matter (CDOM) (including detritus) to chlorophyll. The third and fourth steps discriminated red tide water from non-red tide water based on the blue-to-green ratio in areas with lower and higher contributions of CDOM to chlorophyll, respectively. After applying the red tide classification (using the four criteria), the spectral response of the red tide water, which is influenced by pigment concentration, showed different slopes for the blue and green bands (lower slope at blue bands and higher slope at green bands). The opposite result was found for non-red tide water, due to decreasing phytoplankton absorption and increasing detritus/CDOM absorption at blue bands. The results were well matched with the discoloration of water (blue to dark red/brown) and delineated the areal coverage of C. polykrikoides blooms, revealing the nature of spatial and temporal variations in red tides. This simple spectral classification method led to increase user accuracy for C. polykrikoides and non-red tide blooms (>46% and >97%) and provided a more reliable and robust identification of red tides over a wide range of oceanic environments than was possible using chlorophyll a concentration, chlorophyll anomaly, fluorescence analysis, or proposed red tide detection algorithms.  相似文献   

13.
A general formulation is given of the hydrodynamic forces on a ship, oscillating about a state of rest in 6df in response to excitation by a harmonic wave in shallow water. A method is described to obtain a numerical approximation of the velocity potential, describing the flow around the moving ship by means of a distribution of discrete three-dimensional sources.With this method it is possible to take the influence of a quay into account.Calculated values of wave excited forces, hydrodynamic coefficients and motions of a 200,000 tdw tanker in shallow water are presented and compared with experimental results.  相似文献   

14.
Analysis of current velocity and temperature records obtained from moored buoy systems deployed off the east coast of Japan reveals the intermittent occurrence of semi-diurnal internal tides and their manner of propagation. The internal tidal waves clearly propagate toward the shore, which is confirmed by cross-correlation of the onshore current velocity and temperature between neighboring stations. The propagation speed of the internal tide increases with water depth except in the area furthest offshore. In this area, motions near the second mode seem to occur occasionally, while in the nearshore area the motions for the most part consist of the first mode. Through harmonic analysis, it is shown that theM 1 internal motions were not vertically homogeneous. That is, the internal motions are greater at the lower level in the nearshore area while they are greater at the upper level in the offshore area. Pathways along which the energy of the internal tide should propagate are estimated in such a way that the characteristic curves pass through the area over which relatively large onshore/offshoreM 2 velocity is distributed. The movement of the characteristic ray of a certain phase explains the observed phase velocity estimated from the cross-correlation diagrams. Internal motions around the characteristic ray were pronounced in a rather wide area. Thus, it is suggested that the generation region of the internal tide in the present study area might be relatively wide.  相似文献   

15.
The effects of scattering and resonance on the energy dissipation of an internal tide were investigated using a two-dimensional model which is a reassembled version of the theoretical generation model devised by Rattray et al. (1969) for internal tide. The basic character of the scattering process at the step bottom was first investigated with a wide shelf model. When the internal wave incited from a deep region (Region II) into the shallow shelf region (Region I), a passing wave into the shallow region, a reflected wave into the deep region, and a beam-like wave, i.e. a scattered wave (SW), emanated at the step bottom. The SW, which consists of the superposition of numerous internal modes, propagated upward/downward into both regions. The general properties of the SW were well expressed around the shelf edge, even in the present model with viscosity effect. The amplitude of the SW decreased dramatically when the depth of the velocity maximum of the incident internal wave in Region II corresponded with the depth of the shelf edge. In the narrow shelf model, where the decay distance of the internal wave in Region I is longer than the shelf width, the incident internal wave reflected at the coast to form a standing wave. When the internal wave in Region I is enhanced by the resonance, the energy of the SW in Region II is also intensified. Furthermore, the energy of the modes in Region II predominated when the velocity maximum is identical to that of the dominant mode in Region I. These results suggest that the spatial scale of shelf region is a very important factor governing the energy dissipation of the internal tide through reflection and scattering in a narrow shelf.  相似文献   

16.
利用一个两层半的热带海洋模式,采用数值实验的方法研究了热带海洋对于初始海洋混合层深度异常和大气季节内时间尺度热力强迫激发产生的Rossby波和Kelvin波。研究表明,初始海洋混合层深度异常和大气热力强迫,可以在两层半热带海洋模式中激发产生东向传播具有Kelvin波性质的波动和具有Rossby波性质的波动。热力强迫激发产生海洋Rossby波和Kelvin波所需时间长于初始海洋混合层深度异常和大气季节内动力强迫激发产生两波所需时间,与大气季节内动力强迫激发的Rossby波相比,初始深度异常与大气热力强迫激发产生Rossby波具有不同的热力性质。  相似文献   

17.
Specific properties of the interannual sea level variations and annual tides in the Northwestern Pacific were studied. Several tide stations were monitored. The monthly mean sea level for the year of 1995 was analyzed at each tide station. A seismic event in 1995, some tectonic activity around the subject area, and the Kuroshio (the oceanic western boundary current) may possibly contaminate results which would have occurred from the astronomical annual tide alone.  相似文献   

18.
The abrupt depth increase which characterises the edge of many continental shelves determines a reduced horizontal length scale and a localised transition from shelf seas to the deep ocean. Particular forms of motion which may arise from the steep slopes include topographically guided currents along the slope, shelf-break upwelling, topographic Rossby waves and internal lee waves in the tidal current. The ocean/shelf mismatch may lead to a clear separation of water types, substantial reflection (from the shelf-edge neighbourhood) of all oceanic and shelf motions with periods greater than a few hours, and interaction between barotropic and baroclinic motions. Unstable longshelf currents, interleaving water masses, strong internal tides and internal waves, and narrow canyons enhance mixing across the shelf edge.  相似文献   

19.
Specific properties of the interannual sea level variations and annual tides in the Northwestern Pacific were studied. Several tide stations were monitored. The monthly mean sea level for the year of 1995 was analyzed at each tide station. A seismic event in 1995, some tectonic activity around the subject area, and the Kuroshio (the oceanic western boundary current) may possibly contaminate results which would have occurred from the astronomical annual tide alone.  相似文献   

20.
We have computed estimates of the rate of vertical land motion in the Mediterranean Sea from differences of sea level heights measured by the TOPEX/Poseidon radar altimeter and by a set of tide gauge stations. The comparison of data at 16 tide gauges, using both hourly data from local datasets and monthly data from the PSMSL dataset, shows a general agreement, significant differences are found at only one location. Differences of near-simultaneous, monthly and deseasoned monthly sea level height time-series have been considered in order to reduce the error in the estimated linear-term. In a subset of 23 tide gauge stations the mean accuracy of the estimated vertical rates is 2.3 ± 0.8 mm/yr. Results for various stations are in agreement with estimates of vertical land motion from geodetic methods. A comparison with vertical motion estimated by GPS at four locations shows a mean difference of ?0.04 ± 1.8 mm/yr, however the length of the GPS time-series and the number of locations are too small to draw general conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号