首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
声学多普勒流速剖面仪由于其结构、原理及观测环境等因素,其流速观测结果与海水实际深度的匹配存在较大偏差。采用第31次南极科考实测ADCP及XCTD数据,通过计算实际声速,对ADCP层深计算公式进行了订正实验,使流速观测数据与其所对应的实际深度重新匹配。结果显示,深度订正值随深度的增加而增大,至700m处,最大订正值可达16m。相应的流速和流向也随深度的订正有大幅度的改变,而且,无论是深度还是流速和流向,其订正值均由低纬向高纬,逐渐增大。  相似文献   

2.
基于2017年4月至2018年8月西太平洋深海潜标观测数据,本文开展了锚系式声学多普勒流速剖面仪数据处理的质量控制研究工作。本文总结了质量控制的基本方法,重点解决了ADCP在流速观测中普遍存在的条带状异常问题。研究结果表明,质量控制常用的良好率与姿态(横摇、纵摇)并不能有效去除异常数据。本文进一步通过流速误差与相关幅值对数据进行质量控制,发现可以有效地去除条带状的异常数据,显著地提高了数据质量水平。因此,该工作对开展海流的结构特征、变异规律和动力机制等研究工作有重要的意义。  相似文献   

3.
基于南海北部浮标和潜标的声学多普勒流速剖面仪(ADCP)数据,通过一套几何算法计算了台风海鸥(1415)期间ADCP的空间变化和流速误差,并进行数据校正。浮标上,台风过后ADCP的水平位移最大可达2.61 km,水平流速误差最大可达0.27 m/s,垂向流速误差最大仅为5×10-4 m/s;温跃层流速校正值在台风过后显著大于流速测值,这表明水平校正对于温跃层流速的质量控制很重要。潜标上,ADCP最大垂向位移增量为179 m,最大绳子倾角为35°,最大水平位移为1.5 km; ADCP水平流速误差和倾角误差都很小,在数据校正中可忽略不计,但对台风过后中层流速的垂向校正不能忽略。  相似文献   

4.
本文基于深海海底动力平台采集的ADCP原始数据,论述了ADCP数据的标准化处理流程及质量控制方法,对原始数据及经过质量控制后的数据进行了不同角度和层面的分析。基于绘制的各类图件,对数据质量、数据有效性、设备性能做出了评估,并分析了深海观测点的海流状况。研究结果表明,本文研究的流程与方法针对ADCP观测数据处理效果良好,可为后续ADCP数据处理、产品生产及质量控制提供技术参考。  相似文献   

5.
ADCP测量悬沙浓度的可行性分析与现场标定   总被引:18,自引:3,他引:18  
程鹏  高抒 《海洋与湖沼》2001,32(2):168-176
根据现场观测数据,对ADCP测量悬浮沙浓度的进行标定实验。结果表明,在观测期间悬沙粒径变化较小的条件下,后散射强度与水样悬沙浓度之间存在较好的相关性。悬沙浓度剖面标定公式中的参数C′可用剖面实测水样浓度来确定,该参数与浓度密切相关:同一剖面不同浓度之间有一定的波动,但同一浓度不同潮时的变化很小。使用同一剖面参数C′的平均值计算出的剖面悬沙分布误差较大(29%-43%),而按不同深度段分别标定,误差可以小于20%,能够满足沉积动力学研究的需要。  相似文献   

6.
用ADCP进行走航式悬沙浓度测量的初步研究   总被引:27,自引:5,他引:27  
用DR300型宽幅ADCP在胶洲湾口站进行了走航工断面观测。观测期间悬沙浓度小于40mg/L,悬沙粒度分布曲线具有双峰特征,调查船航速为2 ̄3m/s。用水样过滤法率定相应的ADCP声学信号,获得池计算悬沙浓度的半经验公式及悬沙浓度剖面分布数据,分析结果即使在悬沙浓度较低,悬沙分选性较差,船速较高等不利于ADCP观测的现场条件下,测量误差与光透式浊度计的误差相当。因此,在走航状态和低悬沙浓度条件下  相似文献   

7.
系统归纳和分析了引起船载ADCP测量误差的主要因素和校正方法。结合实际经验对ADCP资料后处理中的难点问题提出了解决方案,并且取得了良好的结果。  相似文献   

8.
ADCP对悬浮沉积物浓度的测量及其误差分析研究   总被引:6,自引:0,他引:6  
为实时、连续地测量海水中悬浮沉积物,利用声学多普勒海流剖面仪(ADCP),可以在测流的同时,测量海洋悬浮沉积物浓度。描述了利用后散射强度,估计悬浮沉积物浓度的原理。在现场测试中,利用采水器采集水样,通过水样分析并结合声信号的衰减特征对AI)CP的测量结果进行修正。作者还结合现场测试结果,对这一测量方法的精度进行了分析。现场实验表明,经公式校正后,ADCP测得的后散射强度与实测水样所获得的悬浮沉积物浓度之间有很好的相关性,相关系数达0.88,由此证明,此测量方法具有很好的实用价值和应用前景。  相似文献   

9.
利用后散射强度(ABS)估计悬浮沉积物浓度原理,根据Rayleigh散射理论,给出了利用现场粒径分析仪与声学多普勒流速剖面仪(ADCP)同步测量悬浮沉积物浓度的粒径修正方法,并推导出了一种新的、用于对ABS进行粒径修正的等效粒径计算公式(9)。利用这一公式并结合LISST-100所测的粒径分布信息,可以对ADCP所测的ABS进行粒径修正,其修正方法见式(10)。结合利物浦湾和Anglesey周边海域的现场采样、测量及其分析结果,对上述粒径修正方法进行了验证。分析结果表明,采用上述公式进行粒径修正后,ADCP测量悬浮沉积物浓度的精度有较大程度的提高,线性拟合的相关系数从0.65-0.71提高到0.78-0.88。  相似文献   

10.
根据ADCP检测的需要,研究了宽带ADCP的测量原理及其复相关算法.基于ADCP测量的特点和编码脉冲的特点,对宽带ADCP的复相关算法进行了仿真.文中采用的复相关算法简单方便,仅仅需要加法和乘法,大大简化了运算.仿真结果表明该算法可以应用于ADCP多普勒频率测量中.  相似文献   

11.
张焕炜  马毅  张靖宇 《海洋学报》2022,44(7):145-160
大气校正是水体定量遥感的基础与前提。本文从大气校正模型、大气校正模型参数、水体组分差异以及水深反演波段组合方式4个维度探讨大气校正模型对水深反演的影响。研究采用6S、FLAASH、ACOLITE与QUAC 4种大气校正模型,选取大陆型、海洋型与城市型气溶胶模式,以瓦胡岛西北侧与谢米亚岛周边浅水作为清洁水体研究区,以辽东浅滩与槟城海峡作为浑浊水体研究区,基于Landsat-8多光谱影像开展大气校正,并采用8种波段组合方式进行水深遥感反演。研究结果表明:(1)4种大气校正模型均可在一定程度上削弱大气对水体信号的影响;因参数选取以及研究区水体组分的不同,不同模型的校正结果存在一定差异;两类水体反射率峰值分别出现在蓝波段与绿波段;(2)6S大气校正模型鲁棒性较强,该模型因研究区水体组分发生变化导致对应的水深反演结果与其余模型相比波动较小;FLAASH模型在海洋型和城市型两种气溶胶模式水深反演结果在浑浊水体存在较为明显的差异,辽东浅滩浅水区平均相对误差相差7.9%;ACOLITE模型受水体类型影响显著且对浑浊水体具有优越性与稳定性,平均相对误差较FLAASH降低5.6%;(3)多波段水深反演精度普遍优于单波段,但反演精度与波段数目之间无显著的相关性;水深反演波段组合方式对不同研究区敏感性不同,清洁水体三波段模型的反演精度较好,浑浊水体中四波段模型的反演精度最优,平均相对误差较三波段模型降低达5.6%。  相似文献   

12.
珠江口外走航ADCP资料的系统误差订正与质量控制   总被引:1,自引:1,他引:0  
在对珠江口外2006年冬季航次走航ADCP观测资料处理中发现用Joyce的方法不能有效地订正系统误差,其原因在于订正角与航速、船艏向相关。给出了一个订正角为船艏向余弦的拟合函数,得出良好的订正结果。分析了VmDas软件处理流速结果的精度,给出了系统误差识别的方法。发现观测资料中一些不能为VmDas软件识别的错误数据,分析了海况对观测资料的影响,提出了观测资料质量控制与误差订正的一套程序。  相似文献   

13.
ADCP application for long-term monitoring of coastal water   总被引:3,自引:1,他引:2  
Three kind of application of ADCP is reported for long-term monitoring in coastal sea. (1)The routine monitoring of water qualities. The water quality and ADCP echo data (600 kHz) observed in the long-term are analgzed at MT (Marine Tower) Station of Kansai International Airport in the Osaka Bay, Japan. The correlation between the turbidity and echo intensity in the surface layer is not good because air bubbles generated by breaking wave are not detected by the turbidity meter, but detected well by ADCP. When estimating the turbidity consists ofplankrton population from echo intensity, the effect of bubbles have to be eliminated. (2) Monitoring stirring up of bottom sediment. The special observation was carried out by using following two ADCP in the Osaka Bay, One ADCP was installed upward on the sea. The other ADCP was hanged downward at the gate type stand about 3 m above from the bottom. At the spring tide, high echo intensities indicating the stirring up of bottom sediment were observed. (3) The monitoring for the boundary condition of water mixing at an estuary. In summer season, the ADCP was set at the mouth of Tanabe Bay in Wakayama Prefecture, Japan. During the observation, water temperature near the bottom showed remarkable falls with interval of about 5~7d. When the bottom temperature fell, the inflow current with low echo intensity water appears at the bottom layer in the ADCP record. It is concluded that when occasional weak northeast wind makes weak coastal upwelling at the mouth of the bay, the combination ofupwelling with internal tidal flow causes remarkable water exchange and dispels the red tide.  相似文献   

14.
It is known that there is a front-like structure at the mixed layer depth (MLD) distribution in the subtropical gyre, which is called the MLD front, and is associated with the formation region of mode water. In the present article, the generation mechanism of the MLD front is studied using an idealized ocean general circulation model with no seasonal forcing. First, it is shown that the MLD front occurs along a curve where u g ·∇T s = 0 is satisfied (u g is the upper ocean geostrophic velocity vector, T s is the sea surface temperature and ∇ is the horizontal gradient operator). In other words, the front is the boundary between the subduction region (u g ·∇T s > 0) and the region where subduction does not occur (u g ·∇T s < 0). Second, we have investigated subduction of low potential vorticity water at the MLD front, which has been pointed out by past studies. Since u g ·∇T s = 0 at the MLD front, the water particles do not cross the outcrop at the MLD front. The water that is subducted at the MLD front has come from the deep mixed layer region where the sea surface temperature is higher than that at the MLD front. The temperature of the water in the deep mixed layer region decreases as it is advected eastward, attains its minimum at the MLD front where u g ·∇T s = 0, and then subducts under the warmer surface layer. Since the deep mixed layer water subducts beneath a thin stratified surface layer, maintaining its thickness, the mixed layer depth changes abruptly at the subduction location.  相似文献   

15.
短排列多道反射地震接收缆较短,无水鸟、磁罗经、尾标等定位定深设备,给常规数据处理带来诸如观测系统定义等棘手问题;另外,无定深设备会造成接收缆不同接收段的沉放深度不同,破坏反射数据理论双曲线时距曲线关系。针对短排列多道反射地震数据,本文充分利用现场导航数据,计算实际激发点轨迹,再通过反距离比线性插值算法计算检波点的轨迹坐标,获得整个排列的实际观测系统参数。对因沉放深度不一致造成的扭曲时距曲线反射波,文中利用理论双曲线先计算共中心点道集的理论反射波位置,再推算排列中各接收道不同沉放深度处的静校正量,通过静校正拟合运算,消除接收排列非一致深度引起的反射波同相轴扭曲现象。将上述处理方法应用于南极海域短排列多道反射地震数据,最终获得了高分辨率叠加剖面,为后续地质解释提供了保障。  相似文献   

16.
The present climate simulation and future projection of the mixed layer depth(MLD) and subduction process in the subtropical Southeast Pacific are investigated based on the geophysical fluid dynamics laboratory earth system model(GFDL-ESM2 M). The MLD deepens from May and reaches its maximum(>160 m) near(24°S,104°W) in September in the historical simulation. The MLD spatial pattern in September is non-uniform in the present climate, which shows three characteristics:(1) the deep MLD extends f...  相似文献   

17.
A monthly mean climatology of the mixed layer depth (MLD) in the North Pacific has been produced by using Argo observations. The optimum method and parameter for evaluating the MLD from the Argo data are statistically determined. The MLD and its properties from each density profile were calculated with the method and parameter. The monthly mean climatology of the MLD is computed on a 2° × 2° grid with more than 30 profiles for each grid. Two bands of deep mixed layer with more than 200 m depth are found to the north and south of the Kuroshio Extension in the winter climatology, which cannot be reproduced in some previous climatologies. Early shoaling of the winter mixed layer between 20–30°N, which has been pointed out by previous studies, is also well recognized. A notable feature suggested by our climatology is that the deepest mixed layer tends to occur about one month before the mixed layer density peaks in the middle latitudes, especially in the western region, while they tend to coincide with each other in higher latitudes.  相似文献   

18.
副热带东北太平洋混合层深度及其对潜沉的影响   总被引:1,自引:0,他引:1  
The present climate simulations of the mixed layer depth(MLD) and the subduction rate in the subtropical Northeast Pacific are investigated based on nine of the CMIP5 models. Compared with the observation data,spatial patterns of the MLD and the subduction rate are well simulated in these models. The spatial pattern of the MLD is nonuniform, with a local maximum MLD(140 m) region centered at(28°N, 135°W) in late winter. The nonuniform MLD pattern causes a strong MLD front on the south of the MLD maximum region, controls the lateral induction rate pattern, and then decides the nonuniform distribution of the subduction rate. Due to the inter-regional difference of the MLD, we divide this area into two regions. The relatively uniform Ekman pumping has little effect on the nonuniform subduction spatial pattern, though it is nearly equal to the lateral induction in values. In the south region, the northward warm Ekman advection(–1.75×10~(–7) K/s) controls the ocean horizontal temperature advection(–0.85×10~(–7) K/s), and prevents the deepening of the MLD. In the ensemble mean, the contribution of the ocean advection to the MLD is about –29.0 m/month, offsetting the sea surface net heat flux contribution(33.9 m/month). While in the north region, the southward cold advection deepens the MLD(21.4 m/month) as similar as the heat flux(30.4 m/month). In conclusion, the nonuniform MLD pattern is dominated by the nonuniform ocean horizontal temperature advection. This new finding indicates that the upper ocean current play an important role in the variability of the winter MLD and the subduction rate.  相似文献   

19.
The response of the mixed layer depth(MLD) and subduction rate in the subtropical Northeast Pacific to global warming is investigated based on 9 CMIP5 models. Compared with the present climate in the 9 models, the response of the MLD in the subtropical Northeast Pacific to the increased radiation forcing is spatially nonuniform, with the maximum shoaling about 50 m in the ensemble mean result. The inter-model differences of MLD change are non-negligible, which depend on the various dominated mechanisms. On the north of the MLD front, MLD shallows largely and is influenced by Ekman pumping, heat flux, and upper-ocean cold advection changes. On the south of the MLD front, MLD changes a little in the warmer climate, which is mainly due to the upper-ocean warm advection change. As a result, the MLD front intensity weakens obviously from 0.24 m/km to0.15 m/km(about 33.9%) in the ensemble mean, not only due to the maximum of MLD shoaling but also dependent on the MLD non-uniform spatial variability. The spatially non-uniform decrease of the subduction rate is primarily dominated by the lateral induction reduction(about 85% in ensemble mean) due to the significant weakening of the MLD front. This research indicates that the ocean advection change impacts the MLD spatially non-uniform change greatly, and then plays an important role in the response of the MLD front and the subduction process to global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号