首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The junctions of cracks in mudcrack, patterned ground, and columnar joint patterns can be categorized into Y, T,and Xtypes. The mean number of sides, ,to the polygonal areas in such nets is = 2(2JT + 3JY + 4JX)/(JT + JY + 2JX)where JT, JY,and JX are the proportions of T, Y,and Xjunctions, respectively.  相似文献   

2.
The pressure dependence of the Raman spectrum of forsterite was measured over its entire frequency range to over 200 kbar. The shifts of the Raman modes were used to calculate the pressure dependence of the heat capacity, C v, and entropy, S, by using statistical thermodynamics of the lattice vibrations. Using the pressure dependence of C v and other previously measured thermodynamic parameters, the thermal expansion coefficient, , at room temperature was calculated from = K S (T/P) S C V/TVK T, which yields a constant value of ( ln / ln V)T= 6.1(5) for forsterite to 10% compression. This value is in agreement with ( ln / ln V)T for a large variety of materials.At 91 kbar, the compression mechanism of the forsterite lattice abruptly changes causing a strong decrease of the pressure derivative of 6 Raman modes accompanied by large reductions in the intensities of all of the modes. This observation is in agreement with single crystal x-ray diffraction studies to 150 kbar and is interpreted as a second order phase transition.  相似文献   

3.
Celadonite from the northwestern Mojave Desert area of California was examined by detailed Mössbauer spectroscopy at temperatures from 10 K to 400 K. In addition to the predominant Fe3+ doublet with isomer shift 0.4 mm s–1 and quadrupole splitting 0.4 mm s–1, another Fe3+ doublet with 0.4, 1.2 mm/s and two Fe2+ doublets with 1.1, 1.7, 2.7 mm s–1 at 300 K were distinguished. The minor Fe3+ component is ascribed to dehydroxylated surface sites. Most of the remaining Fe(90%) is M2 cis-OH octahedral in an ordered M+–M2+ array. However, about 10% is M1 trans-OH Fe2+. Isomer shift vs. T gives Debye temperatures of 570 K for Fe3+ in M2 and 380 K for both Fe2+ sites, indicating greater vibrational freedom for Fe2+. Quadrupole splitting vs. T for Fe2+ gives a valence electronic energy splitting of 760 cm–1 between the ground and first excited state for M2. The M1 sites have a more drastic variation in vs. T which indicates not only a lower first excited state but a rhombic distortion at these sites. A proposed explanation is a neighboring M2 site vacancy. The soil clay formed from this celadonite, which is mostly Fe-rich smectite, was also studied by Mössbauer spectroscopy. About half the Fe2+ has been oxidized in the clay, but the isomer shifts and quadrupole splittings are essentially the same as in the original celadonite. A texture orientation in the clay absorber was detected by measuring the absorber at 55° to the source radiation. This texture effect produces asymmetric doublets in the usual 90° measurement.  相似文献   

4.
This study examines the links between 31P solidstate NMR studies of aluminum phosphate minerals and their crystallographic structures. We found that 31P isotropic chemical shift values, iso, carry little information about mineral structures. There seems to be no relation between the chemical shift anisotropy, =3311 (33>22> 11), and indicies of phosphate-tetrahedra distortion. 31P1H heteronuclear magnetic dipole interactions, on the other hand, carry important information about hydrous phosphate mineral structures, information that should prove to be quite valuable in studies of phosphate adsorbed on mineral surfaces. This interaction can be measured through a variety of qualitative and quantitative experiments. It appears that spin diffusion is so rapid that subtle differences in hydrogen-bonding environments cannot be resolved.  相似文献   

5.
The elastic moduli of single crystals of pyrope-rich garnet and San Carlos olivine have been measured over a 3 GPa pressure range at room temperature. The combination of improved ultrasonic techniques and this large pressure range provide for more reliable characterization of the pressure dependence of acoustic wave velocities than has previously been possible. First and second pressure derivatives of the velocities have been determined within 1 percent and 10 percent respectively. The Hashin-Shtrikman bounds for the pressure dependences of the bulk and shear moduli of the garnet used in this study are; K = 173.6 GPa, K = 4.93, K = –0.28 GPa–1, G= 94.9 GPa, G = 1.56, G = –0.08 GPa–1 and the Hashin-Shtrikman least-upper bounds and greatestlower bounds for the pressure dependences of the bulk and shear moduli of the San Carlos olivine are K=129.8 GPa, K = 4.66, K= –0.15 GPa–1, G = 77.8 GPa, G = 1.93, G = –0.11 GPa–1 and K = 129.2 GPa, K = 4.63, K= –0.15 GPa–1 G = 77.3 GPa, G=1.96, G = –0.11 GPa–1 respectively. The determination of the room-pressure elastic moduli of this pyrope-almandine garnet removes the previously observed anomaly in the predictions of systematic treatments of variations of the elastic moduli of garnets with composition. The determination of the second pressure derivatives of the moduli of garnet and olivine illustrates the importance of these terms in extrapolations to higher pressures — with K/P for these crystals being reduced by 17 percent and 9 percent respectively over the 3 GPa pressure range.  相似文献   

6.
The harmonic oscillations of large diamagnetic mineral samples induced by a magnetic field is reported, for single crystals of quartz, corundum, and calcite. It was seen for the first time that the period of oscillation, , was proportional to the reciprocal of the magnetic field, H, where the restoring force of the string suspending the crystal became negligible in the high magnetic field. Accordingly, the value of diamagnetic anisotropy, , could be measured from the — H curve with a sensitivity of 5 × 10–10 emu/cc. The values were 5.50 × 10–9 emu/cc for quartz, 4.20 × 10–9 emu/cc for corundum, 9.9 × 10–8 emu/cc for calcite, and 8.8 × 10–8 emu/cc for polycrystalline talc piled with the (001) planes aligned parallel. Significant field-induced rotations were observed for the suspended crystals. When the field was applied along the direction of the diamagnetic hard axis of the stationary crystal, the crystal gradually rotated with increasing field, so that the direction of the hard-axis was perpendicular to the applied field. The field-induced energy has a the maximum value when the field is applied along the diamagnetic hard axis. This reorientation of the crystal occurs because the torque due to the field-induced anisotropic energy exceeds that of the restoring force in high magnetic fields.  相似文献   

7.
The lepidocrocite (-FeOOH) to maghemite (-Fe2O3), and the maghemite to hematite (-Fe2O3) transition temperatures have been monitored by TGA and DSC measurements for four initial -FeOOH samples with different particle sizes. The transition temperature of -FeOOH to -Fe2O3 and the size of the resulting particles were not affected by the particle size of the parent lepidocrocite. In contrast, the -Fe2O3 to -Fe2O3 transition temperature seems to depend on the amount of excess water molecules present in the parent lepidocrocite. Thirteen products obtained by heating for one hour at selected temperatures, were considered. Powder X-ray diffraction was used to qualify their composition and to determine their mean crystallite diameters. Transmission electron micrographs revealed the particle morphology. The Mössbauer spectra at 80 K and room temperature of the mixed and pure decomposition products generally had to be analyzed with a distribution of hyperfine fields and, where appropriate, with an additional quadrupole-splitting distribution. The Mössbauer spectra at variable temperature between 4.2 and 400 K of two single-phase -Fe2O3 samples with extremely small particles show the effect of superparamagnetism over a very broad temperature range. Only at the lowest temperatures (T55 K), two distributed components were resolved from the magnetically split spectra. In the external-field spectra the mI=0 transitions have not vanished. This effect is an intrinsic property of the maghemite particles, indicating a strong spin canting with respect to the applied-field direction. The spectra are successfully reproduced using a bidimensional-distribution approach in which both the canting angle and the magnetic hyperfine field vary within certain intervals. The observed distributions are ascribed to the defect structure of the maghemites (unordered vacancy distribution on B-sites, large surface-to-bulk ratio, presence of OH- groups). An important new finding is the correlation between the magnitude of the hyperfine field and the average canting angle for A-site ferric ions, whereas the B-site spins show a more uniform canting. The Mössbauer parameters of the two hematite samples with MCD104 values of respectively 61.0 and 26.5 nm display a temperature variation which is very similar to that of small-particle hematites obtained from thermal decomposition of goethite. However, for a given MCD the Morin transition temperature for the latter samples is about 30 K lower. This has tentatively been ascribed to the different mechanisms of formation, presumably resulting in slightly larger lattice parameters for the hematite particles formed from goethite, thus shifting the Morin transition to lower temperatures.Senior Research Associate, National Fund for Scientific Research (Belgium)  相似文献   

8.
The electrochemical reduction of xanthoconite, proustite, pyrostilpnite, and pyrargyrite was studied by abrasive stripping voltammetry, a technique which is based upon a preliminary mechanical transfer of trace amounts of the mineral onto the surface of a paraffin impregnated graphite electrode. Because the electrochemical reduction proceeds near to reversibility and is very similar for each pair of minerals, the peak potentials in differential pulse voltammetry can be used to calculate the standard enthalpy of phase transformation of xanthoconite to proustite and of pyrostilpnite to pyrargyrite: T H (xanth proust) O = 35.46 ± 14.15 kJ/mol and T H (pyrostilp pyrarg) O = 38.85 ± 6.60 kJ/mol. These values are not accessible otherwise until now.  相似文献   

9.
Structural parameters and thermodynamic properties of strontianite — witherite solid solutions have been studied by X-ray powder diffraction, heat flux Calvet calorimetry and cation-exchange equilibria technique. X-ray study of the synthetic samples have shown linear and quadratic (for c-parameter) composition dependencies of the lattice constants in the carbonate solid solution. The thermodynamic energy parameters demonstrate the non-ideal character of strontianite — witherite solid solutions. Enthalpies of solution of the samples have been measured in 2PbO*B2O3 at 973 K. The new data on the enthalpy of formation H f,298.15 0 of SrCO3 and BaCO3 were obtained: -1231.4±3.2 and -1209.9±5.8 kJ*mol-1 respectively. The enthalpy of mixing of the solid solution was found to be positive and asymmetric with maximum at XBa (carbonate)=0.35. The composition dependence of the enthalpy of mixing may be described by two — parametric Margules model equation: H mix=X BaX Sr[(4.40±3.91)X Ba+(28.13±3.91)X Sr] kJmol–1 Cation-exchange reactions between carbonates and aqueous SrCl2-BaCl2 supercritical solutions (fluids) were carried out at 973 and 1073 K and 2 kbar. Calculated Margules model parameters of the excess free energy are: for orthorhombic carbonate solid solutions W Sr=W Ba=11.51±0.40 kJmol–1 (973 K) and W Sr=W Ba=12.09±0.95 kJmol (1073 K) for trigonal carbonate solid solutions W Sr=W Ba=13.55±0.40 kJmol (1073 K).  相似文献   

10.
The formulas for thermodynamic functions for minerals are presented, couched in terms of the important thermodynamic variable KT= (P/T)v, where is the volume thermal expansivity and KT is the isothermal bulk modulus. Presenting the formulas in this way leads to simplification since KT as a product varies only slightly with volume, and is close to being independent of temperature at high temperature. Using our equations, we present as examples some computed data in the form of graphs on the entropy, internal energy, Helmholtz free energy, and Gibbs free energy in the high temperature regime (up to 2000 K) and for high compression (up to 0.7), for MgO. For entropy, knowledge of the V, T dependence of KT is sufficient. For enthalpy and internal energy, the equation of state is needed in addition.  相似文献   

11.
In closed magma systems SiO2 approximately measures differentiation progress and oxygen isotopes can seem to obey Rayleigh fractionation only as a consequence of the behaviour of SiO2. The main role of 18O is as a sensitive indicator of contamination, either at the start of differentiation ( 18Oinit) or as a proportion of fractionation in AFC. Plots of 18O vs SiO2-allow to determine initial 18O values for different sequences for source comparison. For NBS-28=9.60, the 18O at 48% SiO2-varies between a high 6.4 for Kiglapait (Kalamarides 1984), 5.9 for Transhimalaya, 5.8 for Hachijo-Jima (Matsuhisa 1979), 5.6 for Koloula (Chivas et al. 1982) and a low 5.3 for the Darran Complex, New Zealand. The Transhimalayan batholiths (Gangdese belt) were emplaced in the Ladakh-Lhasa terrane, between the present-day Banggong-Nujiang, and Indus-Yarlung Tsangbo suture zones, after its accretion to Eurasia. The gradient of the least contaminated continuous ( 18O vs SiO2-igneous trend line is similar to that of Koloula, and AFC calculations suggest a low secondary assimilation rate of less than 0.05 times the rate of crystallisation. Outliers enriched in 18O are frequent in the Lhasa, and apparently rare in the Ladakh transsect. Low- 18O (5.0–0) granitoids and andesites on the Lhasa-Yangbajain axis are the result of present day or recent near-surface geothermal activity; their quartzes still trace the granitoids to the Transhimalaya 18O trend line, but the distribution of low total rock or feldspar 18O values could be a guide to more recent heat flow and thermally marked tectonic lineaments. Two ignimbrites from Maqiang show hardly any 18O-contamination by crustal material.  相似文献   

12.
Mössbauer measurements on synthetic iron orthosilicate Fe2SiO4 (fayalite) were carried out in the antiferromagnetic spin state below T N 65 K. The Mössbauer parameters isomer shift , inner magnetic field H(0), angle between H(0) and the z-component of the electric field gradient (efg), quadrupole splitting QS and asymmetry parameter were determined as a function of temperature. These parameters could be attributed to the two crystallographic sites M1 and M2.The smaller isomer shift on M1 with respect to M2 displays the more covalent character of the Fe-O bond on M1, which is supported by previous neutron diffraction experiments. H(0) shows a Brillouin-type behaviour with different fields on the two crystallographic sites (stronger on M1) and a small discontinuity at T = 23 K which corresponds with previous magnetic measurements. The quadrupole splitting is equal on both sites within error bars, in agreement with previous theoretical results and in contradiction to previous Mössbauer refinements published elsewhere.  相似文献   

13.
Data on the mechanisms of mantle phase transformations have come primarily from studies of analogue systems reacted experimentally at low pressures. In order to study transformation mechanisms in Mg2SiO4 at mantle pressures, forsterite () has been reacted in the stability field of -phase, at 15 GPa and temperatures up to 900° C, using a multianvil split-sphere apparatus. Transmission electron microscope studies of samples reacted for times ranging from 0.25–5.0 h show that forsterite transforms to -phase by an incoherent nucleation and growth mechanism involving nucleation on olivine grain boundaries. This mechanism and the resultant microstructures are very similar to those observed at much lower pressures in analogue systems (Mg2GeO4 and Ni2SiO4) as the result of the olivine to spinel () transformation. Metastable spinel () also forms from Mg2SiO4 olivine at 15 GPa, in addition to -phase, by the incoherent nucleation and growth mechanism. With time, the spinel progressively transforms to the stable -phase. After 1 h, spinels exhibit a highly striated microstructure along {110} and electron diffraction patterns show streaking parallel to [110] which indicates a high degree of structural disorder. High resolution imaging shows that the streaking results from thin lamellae of -phase intergrown with the spinel. The two phases have the orientation relationship [001]//[001] and [010]//[110] so that the quasi cubic-close-packed oxygen sublattices are continuous between both phases. These microstructures are similar to those observed in shocked meteorites and show that spinel transforms to -phase by a martensitic (shear) mechanism. There is also evidence that the mechanism changes to one involving diffusion-controlled growth at conditions close to equilibrium.  相似文献   

14.
Monomineralic domains of chlorite, corundum and Cr muscovite coexist over a kilometer scale within ultramafic schists of the Harare greenstone belt (2.73 Ga). This exotic lithological association includes the conjunction of some of the most aluminous (Al2O388 wt%) and potassic (K2O10 wt%) rocks known. The paragenetic sequence developed from chloritecorundumcorundum+ diaspore: Cr muscovite variably overprinted both the corundum and chloritite domains. Terminal stages were marked by sporadic production of andalusite+quartz, and finally margarite.Chlorite (Cr2O3=0.31–2.65 wt%), corundum (0.79–2.66 wt%), and diaspore are all Cr-rich varieties. The chromian (Cr2O33.86 wt%) paragonitic muscovite incorporates up to 17% of the paragonite molecule, and significant Mg and Fe substitutions.The suite of rocks are characterized by chondritic Ti/Zr ratios (–x=107), systematically enhanced Cr (up to 14000 ppm) and Ni (up to 1200 ppm) abundances, low levels of the alteration-insensitive incompatible elements Th, Ta, Nb. Chlorite, corundum and Cr muscovite represent progressive stages in the incremental metasomatic alteration of a komatiite precursor. Mass balance calculations, constrained by the isochemical behaviour of Ti, Zr and Hf reveal that the komatiite chloritite transformation involved volumetric contractions of 60% by hydrothermal leaching of Si, Fe, Mn, Ca and Na. Reaction of chloritite to corundum involved further volumetric reductions of 50% due to essentially quantitative loss of Si, Fe, Mn, Mg, K and Ca. Conversion of corundum to muscovite required additions of Si, K, Fe, Mn, Mg, Rb and Ba at 50–200% dilation. K, Rb, Ba, Li and Cs are enriched by up to 2×103 over background abundances in ultramafic rocks, and the suite is also enriched in B, Se, Te, Bi, As, Sb and Au. REE were extensively leached during chloritite-corundum stages, whereas LREE additions accompany development of muscovite. Ti, Zr, Hf and Al were all concentrated by selective leaching of mobile components, but absolute additions of Al accompanied development of the corundum domains due to Al precipitation in response to depressurization.Corundum ( 18O=3.5–4.8), muscovite ( 18O=6.7–7.5) and chlorite (4.5–5.6) are isotopically uniform and formed at 380–520° C from a fluid where 18O=5.6–6.9. The corundum is 18O depleted relative to either igneous or anatectic counterparts (Ocor=7.6–8.2), or to gibbsitic laterites ( 18O=12–17).Previous genetic schemes involving metamorphism of exhalites or bauxite, or Si-undersaturation of magmas, can all be ruled out from the data. The chloritite, corundum, Cr-muscovite association represents sequential alteration products of ultramafic rocks by high temperature, low pH hydrothermal solutions carrying LIL-elements, and in which excursions of pH and/or degree of quartz undersaturation account for the mineralogical transitions. A deep level acid epithermal system, or fluid advection across steep inverted thermal gradients in a thrust regime could account for required hydrothermal conditions.  相似文献   

15.
Measurements were made of the hydrogen isotope ratios of hydrous silicates (mica and amphibole) and whole rocks, and the carbon isotope ratios of graphite and carbonaceous matter in the metamorphic rocks from the northern Kiso district in central Japan.D values of hydrous silicates in the graphite-bearing metapelites are always higher than those in graphite-free schists, even though the sample localities of the two rock-types are very close. Hydrogen isotopic equilibrium has been attained between the coexisting minerals.D/H ratios of water in the metamorphic fluids seem to depend strongly on the presence or absence of graphite and seem to be not constant throughout the district. The district is divided into three areas of low (metamorphic zones I, II), medium (zones IIIa–V) and high 13Cgr value (zones VIa–VII) areas. In the high 13Cgr values area, the carbon contents of the graphite-bearing rocks decrease slightly from zones VIa to VII, whereas the 13Cgr values increase sharply from the upper part of zone VIa to VIb. TheD values of biotite in these graphite-bearing rocks are higher than those in the medium 13Cgr area. This suggests that methane enriched inH and12C is produced and liberated by the devolatilization reactions between muscovite, graphite and water. The fluid produced is composed of water, methane and a subordinate amount of carbon dioxide, and its logfO2 value is deduced to be about 1.2 lower than that defined by the FMQ buffer. In the medium 13Cgr area, the 13C values of graphite are nearly constant (–20.8), while the Fe2O3/(Fe2O3 + FeO) ratio of the graphite-bearing rocks apparently decreases with increasing metamorphic grade.D differences in hydrous silicates between graphite-bearing and graphite-free rocks are observed. These facts are interpreted to mean that methane was produced in addition to water and carbon dioxide, and that its generation ( ratio of the fluid was about 2) had practically no isotope effect on the graphite. In the low 13Cgr area, the carbon contents of the rocks decrease clearly from zones I to IIIa. TheD and 13Cgr values of the non-metamorphosed shales are much lower than those of the low grade graphite-bearing metapelites. This suggests that methane is produced and liberated from the rocks even at the incipient stage of metamorphism.  相似文献   

16.
Electron paramagnetic resonance (EPR) spectra of CO 3 3– molecule-ions stabilized by Sc3+ in natural calcite were identified and studied at X-band frequencies and room temperature. The principal values of the g-tensor (g xx= 1.9997, g yy = 2.0030, g zz = 1.9972) and the direction cosines of the g and A tensors for CO 3 3– -Sc3+ center were found to be close to that for the well-known CO 3 3– -Y3+ center. A quantitative comparison of different impurity contents in calcite samples and analysis of the intensities of forbidden transitions were used to identify Sc3+. An estimation of the unpaired electron spin density on the nuclei of paramagnetic centers confirms that both centers, CO 3 3– -Sc3+ and CO 3 3– -Y3+, have the same nature.  相似文献   

17.
The Jurassic Notch Peak granitic stock, western Utah, discordantly intrudes Cambrian interbedded pure limestones and calcareous argillites. Contact metamorphosed argillite and limestone samples, collected along traverses away from the intrusion, were analyzed for 18O, 13C, and D. The 13C and 18O values for the limestones remain constant at about 0.5 (PDB) and 20 (SMOW), respectively, with increasing metamorphic grade. The whole rock 18O values of the argillites systematically decrease from 19 to as low as 8.1, and the 13C values of the carbonate fraction from 0.5 to –11.8. The change in 13C values can be explained by Rayleigh decarbonation during calcsilicate reactions, where calculated is about 4.5 permil for the high-grade samples and less for medium and low-grade samples suggesting a range in temperatures at which most decarbonation occurred. However, the amount of CO2 released was not anough to decrease the whole rock 18O to the values observed in the argillites. The low 18O values close to the intrusion suggest interaction with magmatic water that had a 18O value of 8.5. The extreme lowering of 13C by fractional devolatilization and the lowering of 18O in argillites close to the intrusion indicates oxgen-equivalent fluid/rock ratios in excess of 1.0 and X(CO2)F of the fluid less than 0.2. Mineral assemblages in conjunction with the isotopic data indicate a strong influence of water infiltration on the reaction relations in the argillites and separate fluid and thermal fronts moving thru the argillites. The different stable isotope relations in limestones and argillites attest to the importance of decarbonation in the enhancement of permeability. The flow of fluids was confined to the argillite beds (argillite aquifers) whereas the limestones prevented vertical fluid flow and convective cooling of the stock.  相似文献   

18.
Hydrothermally-altered mesozonal synmetamorphic granitic rocks from Maine have whole-rock 18O (SMOW) values 10.7 to 13.8. Constituent quartz, feldspar, and muscovite have 18O in the range 12.4 to 15.2, 10.0 to 13.2, and 11.1 to 12.0, respectively. Mean values of Q–F ( 18Oquartz 18Ofeldspar)=2.4 and Q–M ( 18Oquartz 18Omuscovite)=3.3 are remarkably uniform (standard deviations of both are 0.2). Measured Q–F and Q–M values demonstrate that the isotopic compositions of the minerals are altered from primary magmatic 18O values but that the minerals closely approached oxygen isotope exchange equilibrium at subsolidus temperatures. Analyzed muscovites have D (SMOW) values in the range –65 to –82.Feldspars in the granitic rocks are mineralogically altered to either (a) muscovite+calcite, (b) muscovite+calcite+epidote, (c) muscovite+epidote, or (d) muscovite only. A consistent relation exists between the assemblage of secondary minerals and the oxygen isotope composition of whole rocks, quartz, and feldspar. Rocks with assemblage (a) have whole-rock 18O>12.1 and contain quartz and feldspar with 18O>13.8 and >11.4, respectively. Rocks with assemblages (b), (c), and (d) have whole-rock 18O<11.4 and contain quartz and feldspar with 18O< 13.1 and <11.0, respectively. The correlation suggests that the mineralogical alteration of the rocks was closely coupled to their isotopic alteration.Three mineral thermometers in altered granite suggest that the hydrothermal event occurred in the temperature range 400°–150° C, 100°–150° C below the peak metamorphic temperature inferred for country rocks immediately adjacent to the plutons. Calculations of mineral-fluid equilibria indicate that samples with assemblage (a) coexisted during the event with CO2-H2O fluids of and 18O=10.8 to 12.2 while samples with assemblages (b), (c), or (d) coexisted with fluids of and 18O=9.4 to 10.1. Compositional variations of the hydrothermal fluids were highly correlated: fluids enriched in CO2 were also enriched in 18O. Because CO2 was added to the granites during hydrothermal alteration and because fluids enriched in CO2 were enriched in 18O, some or all of the variation in 18O of altered granites may have been caused by addition of 18O to the rocks during the hydrothermal event. The source of both the CO2 and 18O could have been high-18O metasedimentary country rocks. The inferred change in isotopic composition of the granites is consistent with depletion of the metacarbonate rocks in 18O close to the plutons and with large volumes of fluid that were inferred from petrologic data to have infiltrated the metacarbonate rocks during metamorphism.A close approach of minerals to oxygen isotope exchange equilibrium in altered mesozonal rocks from Maine is in marked contrast to hydrothermally-altered epizonal granites whose mineral commonly show large departures from oxygen isotope exchange equilibrium. The difference in oxygen isotope systematics between altered epizonal granites and altered mesozonal granites closely parallels a differences between their mineralogical systematics. Both differences demonstrate the important control that depth exerts on the products of hydrothermal alteration. Deeper hydrothermal events occur at higher temperature and are longer-lived. Minerals and fluid have sufficient time to closely approach both isotope exchange and heterogeneous chemical equilibrium. Shallower hydrothermal events occur at lower temperatures and are shorter-lived. Generally there is insufficient time for fluid to closely approach equilibrium with all minerals.  相似文献   

19.
O18/O16 ratios have been measured for 29 quartz samples, 6 whole-rocks, 3 muscovites, and 1 K-feldspar from two adjacent granitic plutons of vastly different age (about 1660 m.y, and 70 m.y.) intruded into the same type of country rock, the Precambrian Pinal schist. Sample traverses were made across 3 different contact zones of these intrusive bodies. Except for 2 quartz veins with O18=+11.0 and + 12.3, all quartz samples collected more than 15 cm from the margin of the Early Tertiary Texas Canyon pluton are isotopically exceedingly uniform with O18=9.47±0.11. Four quartz samples collected more than 10 m from the margin of the Precambrian Johnny Lyon pluton have O18=10.43±0.08. Compared with previous studies of this type, only relatively minor O18-enrichments have occurred in the border zones of the plutons. This is in part because the original O18 differences between the metasedimentary rocks and the intrusives are relatively small (only 3 to 6), but is mainly due to the lack of H2O in the contact zones during intrusion as a result of the general impermeability and prior dehydration of the schist. There is no isotopic evidence for significant influx of external H2O into either of the plutons during their crystallization and cooling. However, in roof-zones where metasedimentary rocks overlie the plutons there is a strong O18 lowering in the contact metamorphic aureoles, indicating upward expulsion of low-O18 magmatic H2O into these rocks.Contribution No. 2015 of the Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91109.  相似文献   

20.
The timescale of structural relaxation in a silicate melt defines the transition from liquid (relaxed) to glassy (unrelaxed) behavior. Structural relaxation in silicate melts can be described by a relaxation time, , consistent with the observation that the timescales of both volume and shear relaxation are of the same order of magnitude. The onset of significantly unrelaxed behavior occurs 2 log10 units of time above . In the case of shear relaxation, the relaxation time can be quantified using the Maxwell relationship for a viscoelastic material; S = S/G (where S is the shear relaxation time, G is the shear modulus at infinite frequency and S is the zero frequency shear viscosity). The value of G known for SiO2 and several other silicate glasses. The shear modulus, G , and the bulk modulus, K , are similar in magnitude for every glass, with both moduli being relatively insensitive to changes in temperature and composition. In contrast, the shear viscosity of silicate melts ranges over at least ten orders of magnitude, with composition at fixed temperature, and with temperature at fixed composition. Therefore, relative to S, G may be considered a constant (independent of composition and temperature) and the value of S, the relaxation time, may be estimated directly for the large number of silicate melts for which the shear viscosity is known.For silicate melts, the relaxation times calculated from the Maxwell relationship agree well with available data for the onset of the frequency-dependence (dispersion) of acoustic velocities, the onset of non-Newtonian viscosities, the scan-rate dependence of the calorimetric glass transition, with the timescale of an oxygen diffusive jump and with the Si-O bond exchange frequency obtained from 29Si NMR studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号